# Gauss–Jacobi formula

(0.001 seconds)

## 1—10 of 12 matching pages

##### 2: 20.11 Generalizations and Analogs
###### §20.11(i) Gauss Sum
This is Jacobi’s inversion problem of §20.9(ii). … Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
##### 3: 18.12 Generating Functions
###### Jacobi
18.12.1 $\frac{2^{\alpha+\beta}}{R(1+R-z)^{\alpha}(1+R+z)^{\beta}}=\sum_{n=0}^{\infty}P% ^{(\alpha,\beta)}_{n}\left(x\right)z^{n},$ $R=\sqrt{1-2xz+z^{2}}$, $|z|<1$.
18.12.3 $(1+z)^{-\alpha-\beta-1}\*{{}_{2}F_{1}}\left({\tfrac{1}{2}(\alpha+\beta+1),% \tfrac{1}{2}(\alpha+\beta+2)\atop\beta+1};\frac{2(x+1)z}{(1+z)^{2}}\right)=% \sum_{n=0}^{\infty}\frac{{\left(\alpha+\beta+1\right)_{n}}}{{\left(\beta+1% \right)_{n}}}P^{(\alpha,\beta)}_{n}\left(x\right)z^{n},$ $|z|<1$,
and a similar formula by symmetry; compare the second row in Table 18.6.1. For the hypergeometric function ${{}_{2}F_{1}}$ see §§15.1, 15.2(i). …
##### 4: Errata
• Other Changes

• Equations (4.45.8) and (4.45.9) have been replaced with equations that are better for numerically computing $\operatorname{arctan}x$.

• A new Subsection 13.29(v) Continued Fractions, has been added to cover computation of confluent hypergeometric functions by continued fractions.

• A new Subsection 14.5(vi) Addendum to §14.5(ii) $\mu=0$, $\nu=2$ , containing the values of Legendre and Ferrers functions for degree $\nu=2$ has been added.

• Subsection 14.18(iii) has been altered to identify Equations (14.18.6) and (14.18.7) as Christoffel’s Formulas.

• A new Subsection 15.19(v) Continued Fractions, has been added to cover computation of the Gauss hypergeometric functions by continued fractions.

• Special cases of normalization of Jacobi polynomials for which the general formula is undefined have been stated explicitly in Table 18.3.1.

• Cross-references have been added in §§1.2(i), 10.19(iii), 10.23(ii), 17.2(iii), 18.15(iii), 19.2(iv), 19.16(i).

• Several small revisions have been made. For details see §§5.11(ii), 10.12, 10.19(ii), 18.9(i), 18.16(iv), 19.7(ii), 22.2, 32.11(v), 32.13(ii).

• Entries for the Sage computational system have been updated in the Software Index.

• The default document format for DLMF is now HTML5 which includes MathML providing better accessibility and display of mathematics.

• All interactive 3D graphics on the DLMF website have been recast using WebGL and X3DOM, improving portability and performance; WebGL it is now the default format.

• ##### 5: 18.5 Explicit Representations
###### §18.5(ii) Rodrigues Formulas
Related formula: …
###### Jacobi
and two similar formulas by symmetry; compare the second row in Table 18.6.1. … For corresponding formulas for Chebyshev, Legendre, and the Hermite $\mathit{He}_{n}$ polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
##### 6: Bibliography M
• T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
• T. Masuda (2003) On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46 (1), pp. 121–171.
• S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
• S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
• D. S. Moak (1984) The $q$-analogue of Stirling’s formula. Rocky Mountain J. Math. 14 (2), pp. 403–413.
• ##### 7: 31.7 Relations to Other Functions
###### §31.7(i) Reductions to the Gauss Hypergeometric Function
Other reductions of $\mathit{H\!\ell}$ to a ${{}_{2}F_{1}}$, with at least one free parameter, exist iff the pair $(a,p)$ takes one of a finite number of values, where $q=\alpha\beta p$. …
31.7.2 $\mathit{H\!\ell}\left(2,\alpha\beta;\alpha,\beta,\gamma,\alpha+\beta-2\gamma+1% ;z\right)={{}_{2}F_{1}}\left(\tfrac{1}{2}\alpha,\tfrac{1}{2}\beta;\gamma;1-(1-% z)^{2}\right),$
With $z={\operatorname{sn}}^{2}\left(\zeta,k\right)$ and …Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities $\zeta=K$, $K+i{K^{\prime}}$, and $i{K^{\prime}}$, where $K$ and ${K^{\prime}}$ are related to $k$ as in §19.2(ii).
##### 8: Bibliography G
• F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
• G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
• C. F. Gauss (1863) Werke. Band II. pp. 436–447 (German).
• W. Gautschi (1983) How and how not to check Gaussian quadrature formulae. BIT 23 (2), pp. 209–216.
• H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
• ##### 9: 15.9 Relations to Other Functions
###### §15.9(ii) Jacobi Function
The Jacobi transform is defined as …with inverse … …
##### 10: Bibliography I
• M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
• M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and $q$-Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
• A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
• A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
• K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.