About the Project

Gauss–Christoffel quadrature

AdvancedHelp

(0.001 seconds)

11—20 of 141 matching pages

11: 18.40 Methods of Computation
โ–บ
A numerical approach to the recursion coefficients and quadrature abscissas and weights
โ–บIn what follows we consider only the simple, illustrative, case that ฮผ โข ( x ) is continuously differentiable so that d ฮผ โข ( x ) = w โก ( x ) โข d x , with w โก ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients ฮฑ n , ฮฒ n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). These quadrature weights and abscissas will then allow construction of a convergent sequence of approximations to w โก ( x ) , as will be considered in the following paragraphs. … โ–บThe quadrature abscissas x n and weights w n then follow from the discussion of §3.5(vi). … โ–บThe quadrature points and weights can be put to a more direct and efficient use. …
12: 16.12 Products
โ–บ โ–บ โ–บ
16.12.3 ( F 1 2 โก ( a , b c ; z ) ) 2 = k = 0 ( 2 โข a ) k โข ( 2 โข b ) k โข ( c 1 2 ) k ( c ) k โข ( 2 โข c 1 ) k โข k ! โข F 3 4 โก ( 1 2 โข k , 1 2 โข ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) โข z k , | z | < 1 .
13: 15.4 Special Cases
โ–บ
15.4.1 F โก ( 1 , 1 ; 2 ; z ) = z 1 โข ln โก ( 1 z ) ,
โ–บ
15.4.2 F โก ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 โข z โข ln โก ( 1 + z 1 z ) ,
โ–บ
15.4.3 F โก ( 1 2 , 1 ; 3 2 ; z 2 ) = z 1 โข arctan โก z ,
โ–บ
F โก ( a , b ; a ; z ) = ( 1 z ) b ,
โ–บ
F โก ( a , b ; b ; z ) = ( 1 z ) a ,
14: Bibliography T
โ–บ
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • โ–บ
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • โ–บ
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • โ–บ
  • L. N. Trefethen (2011) Six myths of polynomial interpolation and quadrature. Math. Today (Southend-on-Sea) 47 (4), pp. 184–188.
  • 15: 15.1 Special Notation
    โ–บ โ–บ
    16: 15.16 Products
    โ–บ
    15.16.1 F โก ( a , b c 1 2 ; z ) โข F โก ( c a , c b c + 1 2 ; z ) = s = 0 ( c ) s ( c + 1 2 ) s โข A s โข z s , | z | < 1 ,
    โ–บ
    15.16.2 ( 1 z ) a + b c โข F โก ( 2 โข a , 2 โข b ; 2 โข c 1 ; z ) = s = 0 A s โข z s , | z | < 1 .
    โ–บ
    15.16.3 F โก ( a , b c ; z ) โข F โก ( a , b c ; ฮถ ) = s = 0 ( a ) s โข ( b ) s โข ( c a ) s โข ( c b ) s ( c ) s โข ( c ) 2 โข s โข s ! โข ( z โข ฮถ ) s โข F โก ( a + s , b + s c + 2 โข s ; z + ฮถ z โข ฮถ ) , | z | < 1 , | ฮถ | < 1 , | z + ฮถ z โข ฮถ | < 1 .
    โ–บ
    15.16.4 F โก ( a , b c ; z ) โข F โก ( a , b c ; z ) + a โข b โข ( a c ) โข ( b c ) c 2 โข ( 1 c 2 ) โข z 2 โข F โก ( 1 + a , 1 + b 2 + c ; z ) โข F โก ( 1 a , 1 b 2 c ; z ) = 1 .
    โ–บ
    15.16.5 F โก ( 1 2 + ฮป , 1 2 ฮฝ 1 + ฮป + ฮผ ; z ) โข F โก ( 1 2 ฮป , 1 2 + ฮฝ 1 + ฮฝ + ฮผ ; 1 z ) + F โก ( 1 2 + ฮป , 1 2 ฮฝ 1 + ฮป + ฮผ ; z ) โข F โก ( 1 2 ฮป , 1 2 + ฮฝ 1 + ฮฝ + ฮผ ; 1 z ) F โก ( 1 2 + ฮป , 1 2 ฮฝ 1 + ฮป + ฮผ ; z ) โข F โก ( 1 2 ฮป , 1 2 + ฮฝ 1 + ฮฝ + ฮผ ; 1 z ) = ฮ“ โก ( 1 + ฮป + ฮผ ) โข ฮ“ โก ( 1 + ฮฝ + ฮผ ) ฮ“ โก ( ฮป + ฮผ + ฮฝ + 3 2 ) โข ฮ“ โก ( 1 2 + ฮฝ ) , | ph โก z | < ฯ€ , | ph โก ( 1 z ) | < ฯ€ .
    17: 15.2 Definitions and Analytical Properties
    โ–บ
    §15.2(i) Gauss Series
    โ–บThe hypergeometric function F โก ( a , b ; c ; z ) is defined by the Gauss seriesโ–บOn the circle of convergence, | z | = 1 , the Gauss series: … โ–บThe same properties hold for F โก ( a , b ; c ; z ) , except that as a function of c , F โก ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … โ–บFormula (15.4.6) reads F โก ( a , b ; a ; z ) = ( 1 z ) b . …
    18: 16.6 Transformations of Variable
    โ–บ
    16.6.1 F 2 3 โก ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a โข F 2 3 โก ( a b c + 1 , 1 2 โข a , 1 2 โข ( a + 1 ) a b + 1 , a c + 1 ; 4 โข z ( 1 z ) 2 ) .
    โ–บ
    16.6.2 F 2 3 โก ( a , 2 โข b a 1 , 2 2 โข b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a โข F 2 3 โก ( 1 3 โข a , 1 3 โข a + 1 3 , 1 3 โข a + 2 3 b , a b + 3 2 ; 27 โข z 4 โข ( 1 z ) 3 ) .
    โ–บFor Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
    19: Bibliography X
    โ–บ
  • H. Xiao, V. Rokhlin, and N. Yarvin (2001) Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems 17 (4), pp. 805–838.
  • 20: Bibliography I
    โ–บ
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • โ–บ
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.