About the Project

Gauss%E2%80%93Legendre%20formula

AdvancedHelp

(0.004 seconds)

1—10 of 462 matching pages

1: 14.1 Special Notation
§14.1 Special Notation
β–ΊThe main functions treated in this chapter are the Legendre functions 𝖯 Ξ½ ⁑ ( x ) , 𝖰 Ξ½ ⁑ ( x ) , P Ξ½ ⁑ ( z ) , Q Ξ½ ⁑ ( z ) ; Ferrers functions 𝖯 Ξ½ ΞΌ ⁑ ( x ) , 𝖰 Ξ½ ΞΌ ⁑ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P Ξ½ ΞΌ ⁑ ( z ) , Q Ξ½ ΞΌ ⁑ ( z ) , 𝑸 Ξ½ ΞΌ ⁑ ( z ) ; conical functions 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) , 𝖰 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) , 𝖰 ^ 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) , P 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) , Q 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) (also known as Mehler functions). … β–ΊMagnus et al. (1966) denotes 𝖯 Ξ½ ΞΌ ⁑ ( x ) , 𝖰 Ξ½ ΞΌ ⁑ ( x ) , P Ξ½ ΞΌ ⁑ ( z ) , and Q Ξ½ ΞΌ ⁑ ( z ) by P Ξ½ ΞΌ ⁑ ( x ) , Q Ξ½ ΞΌ ⁑ ( x ) , 𝔓 Ξ½ ΞΌ ⁑ ( z ) , and 𝔔 Ξ½ ΞΌ ⁑ ( z ) , respectively. Hobson (1931) denotes both 𝖯 Ξ½ ΞΌ ⁑ ( x ) and P Ξ½ ΞΌ ⁑ ( x ) by P Ξ½ ΞΌ ⁑ ( x ) ; similarly for 𝖰 Ξ½ ΞΌ ⁑ ( x ) and Q Ξ½ ΞΌ ⁑ ( x ) .
2: 18.3 Definitions
§18.3 Definitions
β–ΊThis table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … β–ΊFormula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). … β–Ί
Legendre
β–ΊLegendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions (§14.7(i)). …
3: 15.5 Derivatives and Contiguous Functions
β–Ί
§15.5(i) Differentiation Formulas
β–ΊThe six functions F ⁑ ( a ± 1 , b ; c ; z ) , F ⁑ ( a , b ± 1 ; c ; z ) , F ⁑ ( a , b ; c ± 1 ; z ) are said to be contiguous to F ⁑ ( a , b ; c ; z ) . … β–Ί
15.5.12 ( b a ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) b ⁒ F ⁑ ( a , b + 1 ; c ; z ) = 0 ,
β–ΊBy repeated applications of (15.5.11)–(15.5.18) any function F ⁑ ( a + k , b + β„“ ; c + m ; z ) , in which k , β„“ , m are integers, can be expressed as a linear combination of F ⁑ ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . … β–Ί
15.5.20 z ⁒ ( 1 z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c a ) ⁒ F ⁑ ( a 1 , b ; c ; z ) + ( a c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) = ( c b ) ⁒ F ⁑ ( a , b 1 ; c ; z ) + ( b c + a ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) ,
4: 16.12 Products
β–Ί β–ΊThe following formula is often referred to as Clausen’s formula β–Ί β–Ί
16.12.3 ( F 1 2 ⁑ ( a , b c ; z ) ) 2 = k = 0 ( 2 ⁒ a ) k ⁒ ( 2 ⁒ b ) k ⁒ ( c 1 2 ) k ( c ) k ⁒ ( 2 ⁒ c 1 ) k ⁒ k ! ⁒ F 3 4 ⁑ ( 1 2 ⁒ k , 1 2 ⁒ ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) ⁒ z k , | z | < 1 .
5: 15.4 Special Cases
β–Ί
15.4.1 F ⁑ ( 1 , 1 ; 2 ; z ) = z 1 ⁒ ln ⁑ ( 1 z ) ,
β–Ί
15.4.2 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 1 + z 1 z ) ,
β–Ί
15.4.3 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = z 1 ⁒ arctan ⁑ z ,
β–Ί
F ⁑ ( a , b ; a ; z ) = ( 1 z ) b ,
β–Ί
F ⁑ ( a , b ; b ; z ) = ( 1 z ) a ,
6: 15.16 Products
β–Ί β–Ί
15.16.2 ( 1 z ) a + b c ⁒ F ⁑ ( 2 ⁒ a , 2 ⁒ b ; 2 ⁒ c 1 ; z ) = s = 0 A s ⁒ z s , | z | < 1 .
β–Ί
15.16.3 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; ΢ ) = s = 0 ( a ) s ⁒ ( b ) s ⁒ ( c a ) s ⁒ ( c b ) s ( c ) s ⁒ ( c ) 2 ⁒ s ⁒ s ! ⁒ ( z ⁒ ΢ ) s ⁒ F ⁑ ( a + s , b + s c + 2 ⁒ s ; z + ΢ z ⁒ ΢ ) , | z | < 1 , | ΢ | < 1 , | z + ΢ z ⁒ ΢ | < 1 .
β–Ί
15.16.4 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; z ) + a ⁒ b ⁒ ( a c ) ⁒ ( b c ) c 2 ⁒ ( 1 c 2 ) ⁒ z 2 ⁒ F ⁑ ( 1 + a , 1 + b 2 + c ; z ) ⁒ F ⁑ ( 1 a , 1 b 2 c ; z ) = 1 .
β–Ί
Generalized Legendre’s Relation
7: 15.2 Definitions and Analytical Properties
β–Ί
§15.2(i) Gauss Series
β–ΊThe hypergeometric function F ⁑ ( a , b ; c ; z ) is defined by the Gauss seriesβ–ΊOn the circle of convergence, | z | = 1 , the Gauss series: … β–ΊThe same properties hold for F ⁑ ( a , b ; c ; z ) , except that as a function of c , F ⁑ ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … β–ΊFormula (15.4.6) reads F ⁑ ( a , b ; a ; z ) = ( 1 z ) b . …
8: 18.5 Explicit Representations
β–Ί
§18.5(ii) Rodrigues Formulas
β–ΊRelated formula: … β–ΊFor the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. … β–ΊFor corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … β–Ί
Legendre
9: 16.3 Derivatives and Contiguous Functions
β–Ί
§16.3(i) Differentiation Formulas
β–Ί β–Ί β–ΊTwo generalized hypergeometric functions F q p ⁑ ( 𝐚 ; 𝐛 ; z ) are (generalized) contiguous if they have the same pair of values of p and q , and corresponding parameters differ by integers. … β–Ί
16.3.6 z ⁒ F 1 0 ⁑ ( ; b + 1 ; z ) + b ⁒ ( b 1 ) ⁒ F 1 0 ⁑ ( ; b ; z ) b ⁒ ( b 1 ) ⁒ F 1 0 ⁑ ( ; b 1 ; z ) = 0 ,
10: 15.8 Transformations of Variable
β–ΊThe transformation formulas between two hypergeometric functions in Group 2, or two hypergeometric functions in Group 3, are the linear transformations (15.8.1). … β–Ί
15.8.13 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 1 2 ⁒ z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ⁑ ( 1 z ) | < Ο€ ,
β–Ί
15.8.14 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 z ) a / 2 ⁒ F ⁑ ( 1 2 ⁒ a , b 1 2 ⁒ a b + 1 2 ; z 2 4 ⁒ z 4 ) , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.15 F ⁑ ( a , b a b + 1 ; z ) = ( 1 + z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 a b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) , | z | < 1 ,
β–Ί
15.8.16 F ⁑ ( a , b a b + 1 ; z ) = ( 1 z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a b + 1 2 a b + 1 ; 4 ⁒ z ( 1 z ) 2 ) , | z | < 1 .