About the Project

Gauss%E2%80%93Christoffel%20quadrature

AdvancedHelp

(0.003 seconds)

1—10 of 233 matching pages

1: 3.5 Quadrature
§3.5(v) Gauss Quadrature
The remainder is given by …
Gauss–Legendre Formula
Gauss–Chebyshev Formula
Gauss–Laguerre Formula
2: 35.10 Methods of Computation
Other methods include numerical quadrature applied to double and multiple integral representations. See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). …
3: 15.5 Derivatives and Contiguous Functions
The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) .
15.5.11 ( c a ) F ( a 1 , b ; c ; z ) + ( 2 a c + ( b a ) z ) F ( a , b ; c ; z ) + a ( z 1 ) F ( a + 1 , b ; c ; z ) = 0 ,
15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,
4: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by … … Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
5: 15.19 Methods of Computation
The Gauss series (15.2.1) converges for | z | < 1 . … Large values of | a | or | b | , for example, delay convergence of the Gauss series, and may also lead to severe cancellation. For fast computation of F ( a , b ; c ; z ) with a , b and c complex, and with application to Pöschl–Teller–Ginocchio potential wave functions, see Michel and Stoitsov (2008). … Gauss quadrature approximations are discussed in Gautschi (2002b). … For example, in the half-plane z 1 2 we can use (15.12.2) or (15.12.3) to compute F ( a , b ; c + N + 1 ; z ) and F ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
6: 18.5 Explicit Representations
For the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. …
18.5.11_1 T n ( x ) = 1 2 n = 0 n / 2 ( 1 ) ( n 1 ) ! ! ( n 2 ) ! ( 2 x ) n 2 = 2 n 1 x n F 1 2 ( 1 2 n , 1 2 n + 1 2 1 n ; 1 x 2 ) , n 1 ,
18.5.11_2 T n ( x ) = F 1 2 ( n , n 1 2 ; 1 x 2 ) ,
18.5.11_4 U n ( x ) = ( n + 1 ) F 1 2 ( n , n + 2 3 2 ; 1 x 2 ) .
7: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
8: 15.10 Hypergeometric Differential Equation
f 1 ( z ) = F ( a , b c ; z ) ,
f 1 ( z ) = F ( a , b a + b + 1 c ; 1 z ) ,
(b) If c equals n = 1 , 2 , 3 , , and a 1 , 2 , , n 1 , then fundamental solutions in the neighborhood of z = 0 are given by F ( a , b ; n ; z ) and …
15.10.11 w 1 ( z ) = F ( a , b c ; z ) = ( 1 z ) c a b F ( c a , c b c ; z ) = ( 1 z ) a F ( a , c b c ; z z 1 ) = ( 1 z ) b F ( c a , b c ; z z 1 ) .
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
9: 15.3 Graphics
See accompanying text
Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
See accompanying text
Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
See accompanying text
Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
See accompanying text
Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
10: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .