About the Project

Gauss%20sums

AdvancedHelp

(0.003 seconds)

9 matching pages

1: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …It can be expressed as a sum over all primes p x : … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x : …(See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … the sum of the k th powers of the positive integers m n that are relatively prime to n . …
2: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
3: 18.5 Explicit Representations
For the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. …
18.5.7 P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n ! ( n ) ! ( x 1 2 ) = ( α + 1 ) n n ! F 1 2 ( n , n + α + β + 1 α + 1 ; 1 x 2 ) ,
18.5.11_1 T n ( x ) = 1 2 n = 0 n / 2 ( 1 ) ( n 1 ) ! ! ( n 2 ) ! ( 2 x ) n 2 = 2 n 1 x n F 1 2 ( 1 2 n , 1 2 n + 1 2 1 n ; 1 x 2 ) , n 1 ,
18.5.11_3 U n ( x ) = = 0 n / 2 ( 1 ) ( n ) ! ! ( n 2 ) ! ( 2 x ) n 2 = ( 2 x ) n F 1 2 ( 1 2 n , 1 2 n + 1 2 n ; 1 x 2 ) ,
18.5.13 H n ( x ) = n ! = 0 n / 2 ( 1 ) ( 2 x ) n 2 ! ( n 2 ) ! = ( 2 x ) n F 0 2 ( 1 2 n , 1 2 n + 1 2 ; 1 x 2 ) .
4: 19.36 Methods of Computation
When the differences are moderately small, the iteration is stopped, the elementary symmetric functions of certain differences are calculated, and a polynomial consisting of a fixed number of terms of the sum in (19.19.7) is evaluated. … The step from n to n + 1 is an ascending Landen transformation if θ = 1 (leading ultimately to a hyperbolic case of R C ) or a descending Gauss transformation if θ = 1 (leading to a circular case of R C ). … Descending Gauss transformations of Π ( ϕ , α 2 , k ) (see (19.8.20)) are used in Fettis (1965) to compute a large table (see §19.37(iii)). … The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
5: Bibliography V
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • I. M. Vinogradov (1937) Representation of an odd number as a sum of three primes (Russian). Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 6: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 7: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • C. F. Gauss (1863) Werke. Band II. pp. 436–447 (German).
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 8: Bibliography K
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 9: Errata
  • Equation (18.38.3)
    18.38.3 m = 0 n P m ( α , 0 ) ( x ) = ( α + 2 ) n n ! F 2 3 ( n , n + α + 2 , 1 2 ( α + 1 ) α + 1 , 1 2 ( α + 3 ) ; 1 2 ( 1 x ) ) 0 , x 1 , α 2 , n = 0 , 1 ,

    This equation was updated to include the value of the sum in terms of the F 2 3 function. Also the constraint was previously 1 x 1 , α > 1 .

  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • Subsection 15.19(v)

    A new Subsection Continued Fractions, has been added to cover computation of the Gauss hypergeometric functions by continued fractions.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.