About the Project

Fuchs%E2%80%93Frobenius%20theory

AdvancedHelp

(0.003 seconds)

1—10 of 228 matching pages

1: 31.18 Methods of Computation
Independent solutions of (31.2.1) can be computed in the neighborhoods of singularities from their FuchsFrobenius expansions (§31.3), and elsewhere by numerical integration of (31.2.1). …
2: 16.23 Mathematical Applications
A variety of problems in classical mechanics and mathematical physics lead to Picard–Fuchs equations. … …
§16.23(iv) Combinatorics and Number Theory
3: 31.3 Basic Solutions
§31.3(i) FuchsFrobenius Solutions at z = 0
§31.3(ii) FuchsFrobenius Solutions at Other Singularities
4: 31.11 Expansions in Series of Hypergeometric Functions
Let w ( z ) be any FuchsFrobenius solution of Heun’s equation. …The Fuchs-Frobenius solutions at are … Every FuchsFrobenius solution of Heun’s equation (31.2.1) can be represented by a series of Type I. …Then the FuchsFrobenius solution at belonging to the exponent α has the expansion (31.11.1) with … Such series diverge for FuchsFrobenius solutions. …
5: 2.7 Differential Equations
§2.7(i) Regular Singularities: FuchsFrobenius Theory
In theory either pair may be used to construct any other solution …
6: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • R. Fuchs (1907) Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (3), pp. 301–321.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 7: 31.10 Integral Equations and Representations
    FuchsFrobenius solutions W m ( z ) = κ ~ m z α H ( 1 / a , q m ; α , α γ + 1 , α β + 1 , δ ; 1 / z ) are represented in terms of Heun functions w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) by (31.10.1) with W ( z ) = W m ( z ) , w ( z ) = w m ( z ) , and with kernel chosen from …
    8: 27.2 Functions
    §27.2(i) Definitions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … This is the number of positive integers n that are relatively prime to n ; ϕ ( n ) is Euler’s totient. …
    27.2.8 a ϕ ( n ) 1 ( mod n ) ,
    9: 8.23 Statistical Applications
    In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319).
    10: Bibliography
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • T. M. Apostol and I. Niven (1994) Number Theory. In The New Encyclopaedia Britannica, Vol. 25, pp. 14–37.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.