About the Project

Fourier-series expansions

AdvancedHelp

(0.002 seconds)

11—19 of 19 matching pages

11: 29.20 Methods of Computation
Initial approximations to the eigenvalues can be found, for example, from the asymptotic expansions supplied in §29.7(i). Subsequently, formulas typified by (29.6.4) can be applied to compute the coefficients of the Fourier expansions of the corresponding Lamé functions by backward recursion followed by application of formulas typified by (29.6.5) and (29.6.6) to achieve normalization; compare §3.6. …The Fourier series may be summed using Clenshaw’s algorithm; see §3.11(ii). … A third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). … The corresponding eigenvectors yield the coefficients in the finite Fourier series for Lamé polynomials. …
12: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 13: 28.34 Methods of Computation
  • (a)

    Summation of the power series in §§28.6(i) and 28.15(i) when | q | is small.

  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(ii)28.8(iv)).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).

  • (a)

    Numerical summation of the expansions in series of Bessel functions (28.24.1)–(28.24.13). These series converge quite rapidly for a wide range of values of q and z .

  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 14: Bibliography O
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 15: Bibliography P
  • R. B. Paris (2001a) On the use of Hadamard expansions in hyperasymptotic evaluation. I. Real variables. Proc. Roy. Soc. London Ser. A 457 (2016), pp. 2835–2853.
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.
  • 16: 14.13 Trigonometric Expansions
    §14.13 Trigonometric Expansions
    These Fourier series converge absolutely when μ < 0 . … For other trigonometric expansions see Erdélyi et al. (1953a, pp. 146–147).
    17: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • A. Terras (1999) Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, Vol. 43, Cambridge University Press, Cambridge.
  • E. C. Titchmarsh (1986a) Introduction to the Theory of Fourier Integrals. Third edition, Chelsea Publishing Co., New York.
  • G. P. Tolstov (1962) Fourier Series. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 18: 20.2 Definitions and Periodic Properties
    §20.2(i) Fourier Series
    Corresponding expansions for θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , can be found by differentiating (20.2.1)–(20.2.4) with respect to z . …
    19: Bibliography C
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • I. Cherednik (1995) Macdonald’s evaluation conjectures and difference Fourier transform. Invent. Math. 122 (1), pp. 119–145.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • J. W. Cooley and J. W. Tukey (1965) An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (90), pp. 297–301.