About the Project

Fourier coefficients

AdvancedHelp

(0.002 seconds)

11—20 of 39 matching pages

11: 28.34 Methods of Computation
  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).

  • 12: 28.22 Connection Formulas
    28.22.5 g e , 2 m ( h ) = ( 1 ) m 2 π ce 2 m ( 1 2 π , h 2 ) A 0 2 m ( h 2 ) ,
    28.22.6 g e , 2 m + 1 ( h ) = ( 1 ) m + 1 2 π ce 2 m + 1 ( 1 2 π , h 2 ) h A 1 2 m + 1 ( h 2 ) ,
    28.22.7 g o , 2 m + 1 ( h ) = ( 1 ) m 2 π se 2 m + 1 ( 1 2 π , h 2 ) h B 1 2 m + 1 ( h 2 ) ,
    28.22.8 g o , 2 m + 2 ( h ) = ( 1 ) m + 1 2 π se 2 m + 2 ( 1 2 π , h 2 ) h 2 B 2 2 m + 2 ( h 2 ) ,
    13: 1.8 Fourier Series
    The series (1.8.1) is called the Fourier series of f ( x ) , and a n , b n are the Fourier coefficients of f ( x ) . … If g ( x ) is also square-integrable with Fourier coefficients a n , b n or c n then … If f ( x ) and g ( x ) are continuous, have the same period and same Fourier coefficients, then f ( x ) = g ( x ) for all x . … If a n and b n are the Fourier coefficients of a piecewise continuous function f ( x ) on [ 0 , 2 π ] , then …
    14: 28.28 Integrals, Integral Representations, and Integral Equations
    28.28.16 0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) ,
    28.28.20 2 π 0 π 𝒞 2 ( j ) ( 2 h R ) cos ( 2 ϕ ) ce 2 m ( t , h 2 ) d t = ε ( 1 ) + m A 2 2 m ( h 2 ) Mc 2 m ( j ) ( z , h ) ,
    28.28.21 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) cos ( ( 2 + 1 ) ϕ ) ce 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m A 2 + 1 2 m + 1 ( h 2 ) Mc 2 m + 1 ( j ) ( z , h ) ,
    28.28.22 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) sin ( ( 2 + 1 ) ϕ ) se 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m B 2 + 1 2 m + 1 ( h 2 ) Ms 2 m + 1 ( j ) ( z , h ) ,
    28.28.23 2 π 0 π 𝒞 2 + 2 ( j ) ( 2 h R ) sin ( ( 2 + 2 ) ϕ ) se 2 m + 2 ( t , h 2 ) d t = ( 1 ) + m B 2 + 2 2 m + 2 ( h 2 ) Ms 2 m + 2 ( j ) ( z , h ) .
    15: 29.15 Fourier Series and Chebyshev Series
    §29.15(i) Fourier Coefficients
    16: Bibliography W
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • 17: 28.29 Definitions and Basic Properties
    For this purpose the discriminant can be expressed as an infinite determinant involving the Fourier coefficients of Q ( x ) ; see Magnus and Winkler (1966, §2.3, pp. 28–36). …
    18: Bibliography L
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 19: 28.31 Equations of Whittaker–Hill and Ince
    Formal 2 π -periodic solutions can be constructed as Fourier series; compare §28.4: …
    28.31.5 w o , s ( z ) = = 0 B 2 + s sin ( 2 + s ) z , s = 1 , 2 ,
    where the coefficients satisfy …
    20: 28.2 Definitions and Basic Properties
    28.2.18 w ( z ) = n = c 2 n e i ( ν + 2 n ) z