About the Project

Fourier

AdvancedHelp

(0.001 seconds)

11—20 of 71 matching pages

11: 1.15 Summability Methods
§1.15(iii) Summability of Fourier Series
Fejér Kernel
§1.15(v) Summability of Fourier Integrals
Fejér Kernel
12: Peter L. Walker
Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
13: 28.11 Expansions in Series of Mathieu Functions
28.11.3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) ,
28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
28.11.5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) ,
28.11.6 sin ( 2 m + 1 ) z = n = 0 B 2 m + 1 2 n + 1 ( q ) se 2 n + 1 ( z , q ) ,
28.11.7 sin ( 2 m + 2 ) z = n = 0 B 2 m + 2 2 n + 2 ( q ) se 2 n + 2 ( z , q ) .
14: 6.16 Mathematical Applications
Consider the Fourier series … Compare Figure 6.16.1. … It occurs with Fourier-series expansions of all piecewise continuous functions. … …
15: 28.35 Tables
§28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Stratton et al. (1941) includes b n , b n , and the corresponding Fourier coefficients for Se n ( c , x ) and So n ( c , x ) for n = 0 or 1 ( 1 ) 4 , c = 0 ( .1 or .2 ) 4.5 . Precision is mostly 5S. Notation: c = 2 q , b n = a n + 2 q , b n = b n + 2 q , and for Se n ( c , x ) , So n ( c , x ) see §28.1.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.

  • 16: 21.10 Methods of Computation
    In addition to evaluating the Fourier series, the main problem here is to compute a Riemann matrix originating from a Riemann surface. …
    17: 27.10 Periodic Number-Theoretic Functions
    Every function periodic (mod k ) can be expressed as a finite Fourier series of the form … is a periodic function of n ( mod k ) and has the finite Fourier-series expansion … The finite Fourier expansion of a primitive Dirichlet character χ ( mod k ) has the form …
    18: 24.8 Series Expansions
    §24.8(i) Fourier Series
    If n = 1 , 2 , and 0 x 1 , then …
    19: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    28.24.2 ε s Mc 2 m ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( J s ( h e z ) 𝒞 + s ( j ) ( h e z ) + J + s ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.3 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) + J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.4 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.5 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) B 2 + 2 2 m + 2 ( h 2 ) B 2 s + 2 2 m + 2 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 2 ( j ) ( h e z ) J + s + 2 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.6 ε s Ie 2 m ( z , h ) = ( 1 ) s = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( I s ( h e z ) I + s ( h e z ) + I + s ( h e z ) I s ( h e z ) ) ,
    20: 28.10 Integral Equations
    With the notation of §28.4 for Fourier coefficients,
    28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
    28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
    28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
    28.10.5 2 π 0 π / 2 sinh ( 2 h sin z sin t ) se 2 n + 1 ( t , h 2 ) d t = h B 1 2 n + 1 ( h 2 ) se 2 n + 1 ( 0 , h 2 ) se 2 n + 1 ( z , h 2 ) ,