About the Project

Fibonacci%20numbers

AdvancedHelp

(0.002 seconds)

1—10 of 274 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 26.11 Integer Partitions: Compositions
c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . … The Fibonacci numbers are determined recursively by …
26.11.7 F n = ( 1 + 5 ) n ( 1 5 ) n 2 n 5 .
Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
3: 24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
§24.15(ii) Tangent Numbers
§24.15(iv) Fibonacci and Lucas Numbers
The Fibonacci numbers are defined by u 0 = 0 , u 1 = 1 , and u n + 1 = u n + u n 1 , n 1 . … For further information on the Fibonacci numbers see §26.11.
4: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 5: 26.5 Lattice Paths: Catalan Numbers
    §26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    C ( n ) is the Catalan number. …
    §26.5(ii) Generating Function
    §26.5(iii) Recurrence Relations
    6: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    7: 27.2 Functions
    where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
    §27.2(ii) Tables
    8: 26.6 Other Lattice Path Numbers
    §26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    Motzkin Number M ( n )
    Narayana Number N ( n , k )
    §26.6(iv) Identities
    9: 24.20 Tables
    §24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    10: 26.14 Permutations: Order Notation
    As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
    §26.14(iii) Identities