About the Project

Ferrers functions

AdvancedHelp

(0.005 seconds)

21—30 of 48 matching pages

21: 29.8 Integral Equations
β–Ί
29.8.2 ΞΌ ⁒ w ⁑ ( z 1 ) ⁒ w ⁑ ( z 2 ) ⁒ w ⁑ ( z 3 ) = 2 ⁒ K ⁑ 2 ⁒ K ⁑ 𝖯 Ξ½ ⁑ ( x ) ⁒ w ⁑ ( z ) ⁒ d z ,
β–Ίwhere 𝖯 Ξ½ ⁑ ( x ) is the Ferrers function of the first kind (§14.3(i)), … β–Ί
29.8.5 𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z 1 , k 2 ) ⁒ w 2 ⁑ ( K ⁑ ) w 2 ⁑ ( K ⁑ ) d w 2 ⁑ ( z ) / d z | z = 0 = K ⁑ K ⁑ 𝖯 Ξ½ ⁑ ( y ) ⁒ 𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z , k 2 ) ⁒ d z ,
β–Ί
29.8.7 𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z 1 , k 2 ) ⁒ w 2 ⁑ ( K ⁑ ) + w 2 ⁑ ( K ⁑ ) w 2 ⁑ ( 0 ) = k 2 ⁒ sn ⁑ ( z 1 , k ) ⁒ K ⁑ K ⁑ sn ⁑ ( z , k ) ⁒ d 𝖯 Ξ½ ⁑ ( y ) d y ⁒ 𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) ⁒ d z ,
β–Ί
29.8.9 𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z 1 , k 2 ) ⁒ d w 2 ⁑ ( z ) / d z | z = K ⁑ d w 2 ⁑ ( z ) / d z | z = K ⁑ w 2 ⁑ ( 0 ) = k 4 k ⁒ sn ⁑ ( z 1 , k ) ⁒ cn ⁑ ( z 1 , k ) ⁒ K ⁑ K ⁑ sn ⁑ ( z , k ) ⁒ cn ⁑ ( z , k ) ⁒ d 2 𝖯 Ξ½ ⁑ ( y ) d y 2 ⁒ 𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 ) ⁒ d z .
22: 16.18 Special Cases
β–ΊAs a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
23: 30.17 Tables
§30.17 Tables
24: 14.15 Uniform Asymptotic Approximations
§14.15 Uniform Asymptotic Approximations
β–Ί
§14.15(i) Large ΞΌ , Fixed Ξ½
β–ΊFor asymptotic expansions and explicit error bounds, see Dunster (2003b). β–Ί
§14.15(iii) Large Ξ½ , Fixed ΞΌ
β–Ί
25: 30.4 Functions of the First Kind
β–ΊIf Ξ³ = 0 , π–―π—Œ n m ⁑ ( x , 0 ) reduces to the Ferrers function 𝖯 n m ⁑ ( x ) : β–Ί β–ΊIt is also equiconvergent with its expansion in Ferrers functions (as in (30.4.2)), that is, the difference of corresponding partial sums converges to 0 uniformly for 1 x 1 . …
26: 14.30 Spherical and Spheroidal Harmonics
§14.30 Spherical and Spheroidal Harmonics
β–Ί
14.30.2 Y l m ⁑ ( ΞΈ , Ο• ) = cos ⁑ ( m ⁒ Ο• ) ⁒ 𝖯 l m ⁑ ( cos ⁑ ΞΈ ) ⁒  or  ⁒ sin ⁑ ( m ⁒ Ο• ) ⁒ 𝖯 l m ⁑ ( cos ⁑ ΞΈ ) .
β–ΊMost mathematical properties of Y l , m ⁑ ( ΞΈ , Ο• ) can be derived directly from (14.30.1) and the properties of the Ferrers function of the first kind given earlier in this chapter. … β–Ί
14.30.9 𝖯 l ⁑ ( cos ⁑ ΞΈ 1 ⁒ cos ⁑ ΞΈ 2 + sin ⁑ ΞΈ 1 ⁒ sin ⁑ ΞΈ 2 ⁒ cos ⁑ ( Ο• 1 Ο• 2 ) ) = 4 ⁒ Ο€ 2 ⁒ l + 1 ⁒ m = l l Y l , m ⁑ ( ΞΈ 1 , Ο• 1 ) ¯ ⁒ Y l , m ⁑ ( ΞΈ 2 , Ο• 2 ) .
β–Ί
27: 14.31 Other Applications
β–ΊThe conical functions 𝖯 1 2 + i ⁒ Ο„ m ⁑ ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates (§14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). …
28: 15.9 Relations to Other Functions
β–Ί
§15.9(iv) Associated Legendre Functions; Ferrers Functions
β–ΊAny hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. …
29: 14.20 Conical (or Mehler) Functions
β–ΊFor 1 < x < 1 and Ο„ > 0 , a numerically satisfactory pair of real conical functions is 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) and 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) . … β–Ί
14.20.2 𝖰 ^ 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) = ⁑ ( e ΞΌ ⁒ Ο€ ⁒ i ⁒ 𝖰 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) ) 1 2 ⁒ Ο€ ⁒ sin ⁑ ( ΞΌ ⁒ Ο€ ) ⁒ 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) .
β–Ί
14.20.4 𝒲 ⁑ { 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) , 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) } = 2 | Ξ“ ⁑ ( ΞΌ + 1 2 + i ⁒ Ο„ ) | 2 ⁒ ( 1 x 2 ) .
β–Ί
14.20.7 𝖰 ^ 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) 1 2 ⁒ Ξ“ ⁑ ( ΞΌ ) ⁒ ( 2 1 x ) ΞΌ / 2 ,
β–Ί
14.20.22 𝖯 1 2 + i ⁒ Ο„ ΞΌ ⁑ ( x ) = Ξ² ⁒ exp ⁑ ( ΞΌ ⁒ Ξ² ⁒ arctan ⁑ Ξ² ) Ξ“ ⁑ ( ΞΌ + 1 ) ⁒ ( 1 + Ξ² 2 ) ΞΌ / 2 ⁒ e ΞΌ ⁒ ρ ( 1 + Ξ² 2 x 2 ⁒ Ξ² 2 ) 1 / 4 ⁒ ( 1 + O ⁑ ( 1 ΞΌ ) ) ,
30: 14.16 Zeros
β–Ί
§14.16(ii) Interval 1 < x < 1