About the Project

Ferrers functions

AdvancedHelp

(0.005 seconds)

11—20 of 48 matching pages

11: 14.11 Derivatives with Respect to Degree or Order
§14.11 Derivatives with Respect to Degree or Order
14.11.2 ν 𝖰 ν μ ( x ) = 1 2 π 2 𝖯 ν μ ( x ) + π sin ( μ π ) sin ( ν π ) sin ( ( ν + μ ) π ) 𝖰 ν μ ( x ) 1 2 cot ( ( ν + μ ) π ) 𝖠 ν μ ( x ) + 1 2 csc ( ( ν + μ ) π ) 𝖠 ν μ ( x ) ,
12: 14.2 Differential Equations
§14.2(ii) Associated Legendre Equation
Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . … Unless stated otherwise in §§14.214.20 it is assumed that the arguments of the functions 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) lie in the interval ( 1 , 1 ) , and the arguments of the functions P ν μ ( x ) , Q ν μ ( x ) , and 𝑸 ν μ ( x ) lie in the interval ( 1 , ) . …
§14.2(iv) Wronskians and Cross-Products
14.2.5 𝖯 ν + 1 μ ( x ) 𝖰 ν μ ( x ) 𝖯 ν μ ( x ) 𝖰 ν + 1 μ ( x ) = Γ ( ν + μ + 1 ) Γ ( ν μ + 2 ) ,
13: 14.3 Definitions and Hypergeometric Representations
§14.3 Definitions and Hypergeometric Representations
Ferrers Function of the First Kind
Ferrers Function of the Second Kind
§14.3(iii) Alternative Hypergeometric Representations
14: 30.8 Expansions in Series of Ferrers Functions
§30.8 Expansions in Series of Ferrers Functions
where 𝖯 n + 2 k m ( x ) is the Ferrers function of the first kind (§14.3(i)), R = 1 2 ( n m ) , and the coefficients a n , k m ( γ 2 ) are given by …
30.8.9 𝖰𝗌 n m ( x , γ 2 ) = k = N 1 ( 1 ) k a n , k m ( γ 2 ) 𝖯 n + 2 k m ( x ) + k = N ( 1 ) k a n , k m ( γ 2 ) 𝖰 n + 2 k m ( x ) ,
where 𝖯 n m and 𝖰 n m are again the Ferrers functions and N = 1 2 ( n + m ) . …
15: 14.33 Tables
§14.33 Tables
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 16: 14.12 Integral Representations
    §14.12(i) 1 < x < 1
    14.12.1 𝖯 ν μ ( cos θ ) = 2 1 / 2 ( sin θ ) μ π 1 / 2 Γ ( 1 2 μ ) 0 θ cos ( ( ν + 1 2 ) t ) ( cos t cos θ ) μ + ( 1 / 2 ) d t , 0 < θ < π , μ < 1 2 .
    14.12.2 𝖯 ν μ ( x ) = ( 1 x 2 ) μ / 2 Γ ( μ ) x 1 𝖯 ν ( t ) ( t x ) μ 1 d t , μ > 0 ;
    14.12.3 𝖰 ν μ ( cos θ ) = π 1 / 2 Γ ( ν + μ + 1 ) ( sin θ ) μ 2 μ + 1 Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) ( 0 ( sinh t ) 2 μ ( cos θ + i sin θ cosh t ) ν + μ + 1 d t + 0 ( sinh t ) 2 μ ( cos θ i sin θ cosh t ) ν + μ + 1 d t ) , 0 < θ < π , μ > 1 2 , ν ± μ > 1 .
    17: 14.13 Trigonometric Expansions
    §14.13 Trigonometric Expansions
    14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
    14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
    14.13.3 𝖯 n ( cos θ ) = 2 2 n + 2 ( n ! ) 2 π ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) sin ( ( n + 2 k + 1 ) θ ) ,
    14.13.4 𝖰 n ( cos θ ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) cos ( ( n + 2 k + 1 ) θ ) ,
    18: 14.8 Behavior at Singularities
    §14.8 Behavior at Singularities
    14.8.1 𝖯 ν μ ( x ) 1 Γ ( 1 μ ) ( 2 1 x ) μ / 2 , μ 1 , 2 , 3 , ,
    14.8.3 𝖰 ν ( x ) = 1 2 ln ( 2 1 x ) γ ψ ( ν + 1 ) + O ( ( 1 x ) ln ( 1 x ) ) , ν 1 , 2 , 3 , ,
    14.8.4 𝖰 ν μ ( x ) 1 2 cos ( μ π ) Γ ( μ ) ( 2 1 x ) μ / 2 , μ 1 2 , 3 2 , 5 2 , ,
    14.8.6 𝖰 ν μ ( x ) Γ ( μ ) Γ ( ν μ + 1 ) 2 Γ ( ν + μ + 1 ) ( 2 1 x ) μ / 2 , ν ± μ 1 , 2 , 3 , .
    19: 14.23 Values on the Cut
    14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
    14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
    20: 18.11 Relations to Other Functions
    Ultraspherical
    18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
    For the Ferrers function 𝖯 n m ( x ) , see §14.3(i). …