About the Project
NIST

Fejér’s

AdvancedHelp

(0.002 seconds)

3 matching pages

1: 1.15 Summability Methods
1.15.41 K R ( s ) = 1 π R 1 - cos ( R s ) s 2 ,
1.15.42 - K R ( s ) d s = 1 .
1.15.43 | s | δ K R ( s ) d s 0 , as R .
1.15.45 σ R ( θ ) = - f ( t ) K R ( θ - t ) d t .
2: 3.5 Quadrature
Examples of open rules are the Gauss formulas (§3.5(v)), the midpoint rule, and Fejérs quadrature rule. …
3: Bibliography W
  • S. S. Wagstaff (1978) The irregular primes to 125000 . Math. Comp. 32 (142), pp. 583–591.
  • J. Waldvogel (2006) Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT 46 (1), pp. 195–202.
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • Wolfram’s Mathworld (website)
  • C. Y. Wu (1982) A series of inequalities for Mills’s ratio. Acta Math. Sinica 25 (6), pp. 660–670.