About the Project

Fej%C3%A9r%E2%80%99s

AdvancedHelp

Did you mean beij%C3%for%E2%80%99s ?

(0.004 seconds)

1—10 of 610 matching pages

1: 7.20 Mathematical Applications
§7.20(ii) Cornu’s Spiral
Let the set { x ( t ) , y ( t ) , t } be defined by x ( t ) = C ( t ) , y ( t ) = S ( t ) , t 0 . Then the set { x ( t ) , y ( t ) } is called Cornu’s spiral: it is the projection of the corkscrew on the { x , y } -plane. …
See accompanying text
Figure 7.20.1: Cornu’s spiral, formed from Fresnel integrals, is defined parametrically by x = C ( t ) , y = S ( t ) , t [ 0 , ) . Magnify
2: 31.2 Differential Equations
§31.2(i) Heun’s Equation
Jacobi’s Elliptic Form
Weierstrass’s Form
§31.2(v) Heun’s Equation Automorphisms
Composite Transformations
3: 29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
we have …For the Weierstrass function see §23.2(ii). …
4: 28.2 Definitions and Basic Properties
§28.2(i) Mathieu’s Equation
§28.2(iii) Floquet’s Theorem and the Characteristic Exponents
This is the characteristic equation of Mathieu’s equation (28.2.1). …
§28.2(iv) Floquet Solutions
5: 7.2 Definitions
§7.2(ii) Dawson’s Integral
7.2.5 F ( z ) = e z 2 0 z e t 2 d t .
7.2.8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t ,
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
lim x S ( x ) = 1 2 .
6: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
For s , …
7: 18.42 Software
For another listing of Web-accessible software for the functions in this chapter, see GAMS (class C3). …
8: 22.16 Related Functions
§22.16(ii) Jacobi’s Epsilon Function
Integral Representations
§22.16(iii) Jacobi’s Zeta Function
Definition
Properties
9: 19.2 Definitions
Because s 2 is a polynomial, we have …
§19.2(ii) Legendre’s Integrals
Legendre’s complementary complete elliptic integrals are defined via …
§19.2(iii) Bulirsch’s Integrals
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
10: Bibliography
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.