About the Project

Fay trisecant identity

AdvancedHelp

(0.002 seconds)

1—10 of 144 matching pages

1: 21.7 Riemann Surfaces
§21.7(ii) Fay’s Trisecant Identity
For all 𝐳 g , and all P 1 , P 2 , P 3 , P 4 on Γ , Fay’s identity is given by … Generalizations of this identity are given in Fay (1973, Chapter 2). Fay derives (21.7.10) as a special case of a more general class of addition theorems for Riemann theta functions on Riemann surfaces. …
2: 21 Multidimensional Theta Functions
3: 21.1 Special Notation
g , h positive integers.
𝐈 g g × g identity matrix.
The function Θ ( ϕ | 𝐁 ) = θ ( ϕ / ( 2 π i ) | 𝐁 / ( 2 π i ) ) is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).
4: 24.10 Arithmetic Properties
where m n 0 ( mod p 1 ) . …valid when m n ( mod ( p 1 ) p ) and n 0 ( mod p 1 ) , where ( 0 ) is a fixed integer. …
24.10.8 N 2 n 0 ( mod p ) ,
valid for fixed integers ( 1 ) , and for all n ( 1 ) such that 2 n 0 ( mod p 1 ) and p | 2 n .
24.10.9 E 2 n { 0 ( mod p ) if  p 1 ( mod 4 ) , 2 ( mod p ) if  p 3 ( mod 4 ) ,
5: Bibliography F
  • J. D. Fay (1973) Theta Functions on Riemann Surfaces. Springer-Verlag, Berlin.
  • 6: 27.16 Cryptography
    Thus, y x r ( mod n ) and 1 y < n . … By the Euler–Fermat theorem (27.2.8), x ϕ ( n ) 1 ( mod n ) ; hence x t ϕ ( n ) 1 ( mod n ) . But y s x r s x 1 + t ϕ ( n ) x ( mod n ) , so y s is the same as x modulo n . …
    7: 36.9 Integral Identities
    §36.9 Integral Identities
    36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
    8: 26.21 Tables
    Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. …
    9: 22.9 Cyclic Identities
    §22.9 Cyclic Identities
    §22.9(ii) Typical Identities of Rank 2
    §22.9(iii) Typical Identities of Rank 3
    10: 24.5 Recurrence Relations
    §24.5(ii) Other Identities
    §24.5(iii) Inversion Formulas
    In each of (24.5.9) and (24.5.10) the first identity implies the second one and vice-versa. …