About the Project

Euler transformation

AdvancedHelp

(0.004 seconds)

21—30 of 93 matching pages

21: 9.10 Integrals
9.10.14 0 e p t Ai ( t ) d t = e p 3 / 3 ( 1 3 p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) , p .
9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
9.10.17 0 t α 1 Ai ( t ) d t = Γ ( α ) 3 ( α + 2 ) / 3 Γ ( 1 3 α + 2 3 ) , α > 0 .
22: 1.14 Integral Transforms
Moreover, if f ( s ) = O ( s K ) in some half-plane s γ and K > 1 , then (1.14.20) holds for σ > γ . …
23: 9.12 Scorer Functions
9.12.24 Hi ( z ) = 3 2 / 3 2 π 2 i i i Γ ( 1 3 + 1 3 t ) Γ ( t ) ( 3 1 / 3 e π i z ) t d t ,
24: 29.18 Mathematical Applications
when transformed to sphero-conal coordinates r , β , γ : … The wave equation (29.18.1), when transformed to ellipsoidal coordinates α , β , γ : …
25: 10.32 Integral Representations
10.32.13 K ν ( z ) = ( 1 2 z ) ν 4 π i c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 z ) 2 t d t , c > max ( ν , 0 ) , | ph z | < 1 2 π .
10.32.14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e z cos ( ν π ) i i Γ ( t ) Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) ( 2 z ) t d t , ν 1 2 , | ph z | < 3 2 π .
10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
26: 7.7 Integral Representations
7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
27: 11.5 Integral Representations
11.5.8 ( 1 2 x ) ν 1 𝐇 ν ( x ) = 1 2 π i i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s , x > 0 , ν > 1 ,
11.5.9 ( 1 2 z ) ν 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 z 2 ) s d s .
28: 31.2 Differential Equations
w ( z ) = z 1 γ w 1 ( z ) satisfies (31.2.1) if w 1 is a solution of (31.2.1) with transformed parameters q 1 = q + ( a δ + ϵ ) ( 1 γ ) ; α 1 = α + 1 γ , β 1 = β + 1 γ , γ 1 = 2 γ . Next, w ( z ) = ( z 1 ) 1 δ w 2 ( z ) satisfies (31.2.1) if w 2 is a solution of (31.2.1) with transformed parameters q 2 = q + a γ ( 1 δ ) ; α 2 = α + 1 δ , β 2 = β + 1 δ , δ 2 = 2 δ . Lastly, w ( z ) = ( z a ) 1 ϵ w 3 ( z ) satisfies (31.2.1) if w 3 is a solution of (31.2.1) with transformed parameters q 3 = q + γ ( 1 ϵ ) ; α 3 = α + 1 ϵ , β 3 = β + 1 ϵ , ϵ 3 = 2 ϵ . … For example, w ( z ) = ( 1 z ) α w ~ ( z / ( z 1 ) ) , which arises from z ~ = z / ( z 1 ) , satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and transformed parameters a ~ = a / ( a 1 ) , q ~ = ( q a α γ ) / ( a 1 ) ; β ~ = α + 1 δ , δ ~ = α + 1 β . …
29: 14.20 Conical (or Mehler) Functions
14.20.4 𝒲 { 𝖯 1 2 + i τ μ ( x ) , 𝖯 1 2 + i τ μ ( x ) } = 2 | Γ ( μ + 1 2 + i τ ) | 2 ( 1 x 2 ) .
14.20.7 𝖰 ^ 1 2 + i τ μ ( x ) 1 2 Γ ( μ ) ( 2 1 x ) μ / 2 ,
§14.20(vi) Generalized Mehler–Fock Transformation
14.20.11 f ( τ ) = τ π sinh ( τ π ) Γ ( 1 2 μ + i τ ) Γ ( 1 2 μ i τ ) 1 P 1 2 + i τ μ ( x ) g ( x ) d x ,
14.20.22 𝖯 1 2 + i τ μ ( x ) = β exp ( μ β arctan β ) Γ ( μ + 1 ) ( 1 + β 2 ) μ / 2 e μ ρ ( 1 + β 2 x 2 β 2 ) 1 / 4 ( 1 + O ( 1 μ ) ) ,
30: 32.2 Differential Equations
32.2.28 w ( z ; α , β , γ , δ ) = 1 + 2 ϵ W ( ζ ; a ) ,
32.2.32 w ( z ; α , β , γ , δ ) = 1 + ϵ ζ W ( ζ ; a , b , c , d ) ,
32.2.34 w ( z ; α , β , γ , δ ) = 1 2 2 ϵ W ( ζ ; a , b ) ,
32.2.36 w ( z ; α , β , γ , δ ) = W ( ζ ; a , b , c , d ) ,