About the Project

Euler sums

AdvancedHelp

(0.006 seconds)

11—20 of 202 matching pages

11: 6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.6 Ci ( z ) = γ + ln z + n = 1 ( 1 ) n z 2 n ( 2 n ) ! ( 2 n ) .
12: 24.4 Basic Properties
§24.4(iii) Sums of Powers
24.4.8 k = 1 m ( 1 ) m k k n = E n ( m + 1 ) + ( 1 ) m E n ( 0 ) 2 .
24.4.13 E n ( x + h ) = k = 0 n ( n k ) E k ( x ) h n k ,
24.4.17 E 2 n = 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 ) B 2 k 2 k .
24.4.20 E n ( m x ) = m n k = 0 m 1 ( 1 ) k E n ( x + k m ) , m = 1 , 3 , 5 , .
13: 13.7 Asymptotic Expansions for Large Argument
13.7.2 𝐌 ( a , b , z ) e z z a b Γ ( a ) s = 0 ( 1 a ) s ( b a ) s s ! z s + e ± π i a z a Γ ( b a ) s = 0 ( a ) s ( a b + 1 ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
13.7.11 R n ( a , b , z ) = ( 1 ) n 2 π z a b Γ ( a ) Γ ( a b + 1 ) ( s = 0 m 1 ( 1 a ) s ( b a ) s s ! ( z ) s G n + 2 a b s ( z ) + ( 1 a ) m ( b a ) m R m , n ( a , b , z ) ) ,
14: 8.18 Asymptotic Expansions of I x ( a , b )
8.18.1 I x ( a , b ) = Γ ( a + b ) x a ( 1 x ) b 1 ( k = 0 n 1 1 Γ ( a + k + 1 ) Γ ( b k ) ( x 1 x ) k + O ( 1 Γ ( a + n + 1 ) ) ) ,
8.18.3 I x ( a , b ) = Γ ( a + b ) Γ ( a ) ( k = 0 n 1 d k F k + O ( a n ) F 0 ) ,
15: 27.6 Divisor Sums
Generating functions, Euler products, and Möbius inversion are used to evaluate many sums extended over divisors. …
27.6.5 d | n | μ ( d ) | ϕ ( d ) = n ϕ ( n ) ,
27.6.6 d | n ϕ k ( d ) ( n d ) k = 1 k + 2 k + + n k ,
16: 36.6 Scaling Relations
cuspoids:  γ K = m = 1 K γ m K = K ( K + 3 ) 2 ( K + 2 ) ,
umbilics:  γ ( U ) = m = 1 3 γ m ( U ) = 5 3 .
17: 2.10 Sums and Sequences
§2.10(i) Euler–Maclaurin Formula
2.10.8 j = 1 n 1 1 j ln n + γ 1 2 n s = 1 B 2 s 2 s 1 n 2 s , n .
In both expansions the remainder term is bounded in absolute value by the first neglected term in the sum, and has the same sign, provided that in the case of (2.10.7), truncation takes place at s = 2 m 1 , where m is any positive integer satisfying m 1 2 ( α + 1 ) . …
2.10.20 j = 0 n 1 x j ( j ! ) 3 = 1 2 i 𝒞 x t ( Γ ( t + 1 ) ) 3 cot ( π t ) d t ,
18: 10.23 Sums
10.23.8 𝒞 ν ( w ) w ν = 2 ν Γ ( ν ) k = 0 ( ν + k ) 𝒞 ν + k ( u ) u ν J ν + k ( v ) v ν C k ( ν ) ( cos α ) , ν 0 , 1 , , | v e ± i α | < | u | ,
10.23.9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) , ν 0 , 1 , .
10.23.15 ( 1 2 z ) ν = k = 0 ( ν + 2 k ) Γ ( ν + k ) k ! J ν + 2 k ( z ) , ν 0 , 1 , 2 , ,
10.23.16 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) 4 π k = 1 ( 1 ) k J 2 k ( z ) k ,
19: 15.2 Definitions and Analytical Properties
15.2.1 F ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s ( c ) s s ! z s = 1 + a b c z + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) 2 ! z 2 + = Γ ( c ) Γ ( a ) Γ ( b ) s = 0 Γ ( a + s ) Γ ( b + s ) Γ ( c + s ) s ! z s ,
15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
20: 17.12 Bailey Pairs
17.12.1 n = 0 α n γ n = n = 0 β n δ n ,
γ n = j = n δ j u j n v j + n .