About the Project

Euler product

AdvancedHelp

(0.003 seconds)

11—20 of 92 matching pages

11: 5.17 Barnes’ G -Function (Double Gamma Function)
β–Ί
5.17.3 G ⁑ ( z + 1 ) = ( 2 ⁒ Ο€ ) z / 2 ⁒ exp ⁑ ( 1 2 ⁒ z ⁒ ( z + 1 ) 1 2 ⁒ Ξ³ ⁒ z 2 ) ⁒ k = 1 ( ( 1 + z k ) k ⁒ exp ⁑ ( z + z 2 2 ⁒ k ) ) .
12: 16.5 Integral Representations and Integrals
β–Ί
16.5.1 ( k = 1 p Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k ) ) ⁒ F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ L ( k = 1 p Ξ“ ⁑ ( a k + s ) / k = 1 q Ξ“ ⁑ ( b k + s ) ) ⁒ Ξ“ ⁑ ( s ) ⁒ ( z ) s ⁒ d s ,
13: 16.8 Differential Equations
β–Ί
16.8.8 F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j ) Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k a j ) Ξ“ ⁑ ( b k ) ) ⁒ w ~ j ⁒ ( z ) , | ph ⁑ ( z ) | Ο€ .
β–Ί
16.8.9 ( k = 1 q + 1 Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k ) ) ⁒ F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( z 0 z ) a j ⁒ n = 0 Ξ“ ⁑ ( a j + n ) n ! ⁒ ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j n ) / k = 1 q Ξ“ ⁑ ( b k a j n ) ) ⁒ F q q + 1 ⁑ ( a 1 a j n , , a q + 1 a j n b 1 a j n , , b q a j n ; z 0 ) ⁒ ( z z 0 ) n .
14: 25.2 Definition and Expansions
β–Ί
25.2.12 ΞΆ ⁑ ( s ) = ( 2 ⁒ Ο€ ) s ⁒ e s ( Ξ³ ⁒ s / 2 ) 2 ⁒ ( s 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ s + 1 ) ⁒ ρ ( 1 s ρ ) ⁒ e s / ρ ,
β–Ίproduct over zeros ρ of ΞΆ with ⁑ ρ > 0 (see §25.10(i)); Ξ³ is Euler’s constant (§5.2(ii)).
15: 31.8 Solutions via Quadratures
β–ΊThe variables Ξ» and Ξ½ are two coordinates of the associated hyperelliptic (spectral) curve Ξ“ : Ξ½ 2 = j = 1 2 ⁒ g + 1 ( Ξ» Ξ» j ) . …
16: 20.12 Mathematical Applications
β–ΊFor applications of Jacobi’s triple product (20.5.9) to Ramanujan’s Ο„ ⁑ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). …
17: 5.13 Integrals
β–Ί
5.13.5 1 4 ⁒ Ο€ ⁒ k = 1 4 Ξ“ ⁑ ( a k + i ⁒ t ) ⁒ Ξ“ ⁑ ( a k i ⁒ t ) Ξ“ ⁑ ( 2 ⁒ i ⁒ t ) ⁒ Ξ“ ⁑ ( 2 ⁒ i ⁒ t ) ⁒ d t = 1 j < k 4 Ξ“ ⁑ ( a j + a k ) Ξ“ ⁑ ( a 1 + a 2 + a 3 + a 4 ) , ⁑ ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
18: 19.29 Reduction of General Elliptic Integrals
β–Ί
19.29.7 y x a α + b α ⁒ t a δ + b δ ⁒ t ⁒ d t s ⁑ ( t ) = 2 3 ⁒ d α ⁒ β ⁒ d α ⁒ γ ⁒ R D ⁑ ( U α ⁒ β 2 , U α ⁒ γ 2 , U α ⁒ δ 2 ) + 2 ⁒ X α ⁒ Y α X δ ⁒ Y δ ⁒ U α ⁒ δ , U α ⁒ δ 0 .
β–Ί
19.29.8 y x a Ξ± + b Ξ± ⁒ t a 5 + b 5 ⁒ t ⁒ d t s ⁑ ( t ) = 2 3 ⁒ d Ξ± ⁒ Ξ² ⁒ d Ξ± ⁒ Ξ³ ⁒ d Ξ± ⁒ Ξ΄ d Ξ± ⁒ 5 ⁒ R J ⁑ ( U 12 2 , U 13 2 , U 23 2 , U Ξ± ⁒ 5 2 ) + 2 ⁒ R C ⁑ ( S Ξ± ⁒ 5 2 , Q Ξ± ⁒ 5 2 ) , S Ξ± ⁒ 5 2 β„‚ βˆ– ( , 0 ) ,
β–Ί
19.29.16 b β ⁒ b γ ⁒ I ⁑ ( 𝐞 α ) = d α ⁒ β ⁒ d α ⁒ γ ⁒ I ⁑ ( 𝐞 α ) + 2 ⁒ b α ⁒ ( s ⁑ ( x ) a α + b α ⁒ x s ⁑ ( y ) a α + b α ⁒ y ) ,
β–Ίwhere Ξ± , Ξ² , Ξ³ is any permutation of the numbers 1 , 2 , 3 , and …
19: 31.15 Stieltjes Polynomials
β–Ί
31.15.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) ⁒ d w d z + Φ ⁑ ( z ) j = 1 N ( z a j ) ⁒ w = 0 ,
β–Ί
31.15.4 G ⁑ ( ΞΆ 1 , ΞΆ 2 , , ΞΆ n ) = k = 1 n β„“ = 1 N ( ΞΆ k a β„“ ) Ξ³ β„“ / 2 ⁒ j = k + 1 n ( ΞΆ k ΞΆ j ) .
β–Ί
31.15.12 ρ ⁑ ( z ) = ( j = 1 N 1 k = 1 N | z j a k | γ k 1 ) ⁒ ( j < k N 1 ( z k z j ) ) .
20: 10.21 Zeros
β–Ί
10.21.15 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ Ξ“ ⁑ ( Ξ½ + 1 ) ⁒ k = 1 ( 1 z 2 j Ξ½ , k 2 ) , Ξ½ 0 ,
β–Ί
10.21.16 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ 1 2 ⁒ Ξ“ ⁑ ( Ξ½ ) ⁒ k = 1 ( 1 z 2 j Ξ½ , k 2 ) , Ξ½ > 0 .