About the Project

Euler polynomials

AdvancedHelp

(0.008 seconds)

11—20 of 128 matching pages

11: 24.12 Zeros
§24.12(ii) Euler Polynomials: Real Zeros
§24.12(iii) Complex Zeros
For complex zeros of Bernoulli and Euler polynomials, see Delange (1987) and Dilcher (1988). …
§24.12(iv) Multiple Zeros
The only polynomial E n ( x ) with multiple zeros is E 5 ( x ) = ( x 1 2 ) ( x 2 x 1 ) 2 .
12: 24.9 Inequalities
§24.9 Inequalities
24.9.3 4 n | E 2 n | > ( 1 ) n E 2 n ( x ) > 0 ,
24.9.5 4 ( 2 n 1 ) ! π 2 n 2 2 n 1 2 2 n 2 > ( 1 ) n E 2 n 1 ( x ) > 0 .
13: 24 Bernoulli and Euler Polynomials
Chapter 24 Bernoulli and Euler Polynomials
14: 24.7 Integral Representations
§24.7(ii) Bernoulli and Euler Polynomials
24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
15: 24.5 Recurrence Relations
§24.5 Recurrence Relations
24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
16: 24.8 Series Expansions
If n = 1 , 2 , and 0 x 1 , then
24.8.4 E 2 n ( x ) = ( 1 ) n 4 ( 2 n ) ! π 2 n + 1 k = 0 sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) 2 n + 1 ,
24.8.5 E 2 n 1 ( x ) = ( 1 ) n 4 ( 2 n 1 ) ! π 2 n k = 0 cos ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) 2 n .
24.8.9 E 2 n = ( 1 ) n k = 1 k 2 n cosh ( 1 2 π k ) 4 k = 0 ( 1 ) k ( 2 k + 1 ) 2 n e 2 π ( 2 k + 1 ) 1 , n = 1 , 2 , .
17: 24.11 Asymptotic Approximations
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
24.11.6 ( 1 ) ( n + 1 ) / 2 π n + 1 4 ( n ! ) E n ( x ) { sin ( π x ) , n  even , cos ( π x ) , n  odd ,
18: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180). …
19: 24.6 Explicit Formulas
24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
24.6.8 E n ( x ) = 1 2 n k = 1 n + 1 j = 0 k 1 ( 1 ) j ( n + 1 k ) ( x + j ) n .
20: Karl Dilcher