About the Project

Euler integral

AdvancedHelp

(0.011 seconds)

31—40 of 206 matching pages

31: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • 32: 8.6 Integral Representations
    8.6.3 γ ( a , z ) = z a 0 exp ( a t z e t ) d t , a > 0 .
    8.6.4 Γ ( a , z ) = z a e z Γ ( 1 a ) 0 t a e t z + t d t , | ph z | < π , a < 1 ,
    8.6.6 Γ ( a , z ) = 2 z 1 2 a e z Γ ( 1 a ) 0 e t t 1 2 a K a ( 2 z t ) d t , a < 1 ,
    8.6.9 Γ ( a , z e ± π i ) = e z e π i a Γ ( 1 + a ) 0 t a e z t t 1 d t , z > 0 , a > 1 ,
    For collections of integral representations of γ ( a , z ) and Γ ( a , z ) see Erdélyi et al. (1953b, §9.3), Oberhettinger (1972, pp. 68–69), Oberhettinger and Badii (1973, pp. 309–312), Prudnikov et al. (1992b, §3.10), and Temme (1996b, pp. 282–283).
    33: 25.20 Approximations
  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 34: 14.12 Integral Representations
    14.12.2 𝖯 ν μ ( x ) = ( 1 x 2 ) μ / 2 Γ ( μ ) x 1 𝖯 ν ( t ) ( t x ) μ 1 d t , μ > 0 ;
    14.12.3 𝖰 ν μ ( cos θ ) = π 1 / 2 Γ ( ν + μ + 1 ) ( sin θ ) μ 2 μ + 1 Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) ( 0 ( sinh t ) 2 μ ( cos θ + i sin θ cosh t ) ν + μ + 1 d t + 0 ( sinh t ) 2 μ ( cos θ i sin θ cosh t ) ν + μ + 1 d t ) , 0 < θ < π , μ > 1 2 , ν ± μ > 1 .
    14.12.4 P ν μ ( x ) = 2 1 / 2 Γ ( μ + 1 2 ) ( x 2 1 ) μ / 2 π 1 / 2 Γ ( ν + μ + 1 ) Γ ( μ ν ) 0 cosh ( ( ν + 1 2 ) t ) ( x + cosh t ) μ + ( 1 / 2 ) d t , ν + μ 1 , 2 , 3 , , ( μ ν ) > 0 .
    14.12.5 P ν μ ( x ) = ( x 2 1 ) μ / 2 Γ ( μ ) 1 x P ν ( t ) ( x t ) μ 1 d t , μ > 0 .
    14.12.6 𝑸 ν μ ( x ) = π 1 / 2 ( x 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( x + ( x 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 .
    35: 17.6 ϕ 1 2 Function
    36: 1.15 Summability Methods
    1.15.47 𝐼 α f ( x ) = 1 Γ ( α ) 0 x ( x t ) α 1 f ( t ) d t .
    1.15.50 𝐼 α f ( x ) = k = 0 k ! Γ ( k + α + 1 ) a k x k + α .
    37: 15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.6 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( t ) Γ ( c + t ) ( z ) t d t , | ph ( z ) | < π ; a , b 0 , 1 , 2 , .
    15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
    38: 6.15 Sums
    6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
    39: 5.13 Integrals
    5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
    5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
    5.13.3 1 2 π Γ ( a + i t ) Γ ( b + i t ) Γ ( c i t ) Γ ( d i t ) d t = Γ ( a + c ) Γ ( a + d ) Γ ( b + c ) Γ ( b + d ) Γ ( a + b + c + d ) , a , b , c , d > 0 .
    5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
    5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
    40: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
    16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .