About the Project

Euler beta integral

AdvancedHelp

(0.010 seconds)

11—20 of 81 matching pages

11: 19.16 Definitions
19.16.9 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 t a 1 j = 1 n ( t + z j ) b j d t = 1 B ( a , a ) 0 t a 1 j = 1 n ( 1 + t z j ) b j d t , b 1 + + b n > a > 0 , b j , z j ( , 0 ] ,
19.16.12 R a ( b 1 , , b 4 ; c 1 , c k 2 , c , c α 2 ) = 2 ( sin 2 ϕ ) 1 a B ( a , a ) 0 ϕ ( sin θ ) 2 a 1 ( sin 2 ϕ sin 2 θ ) a 1 ( cos θ ) 1 2 b 1 ( 1 k 2 sin 2 θ ) b 2 ( 1 α 2 sin 2 θ ) b 4 d θ ,
19.16.19 R a ( b 1 , , b n ; 0 , z 2 , , z n ) = B ( a , a b 1 ) B ( a , a ) R a ( b 2 , , b n ; z 2 , , z n ) , a + a > 0 , a > b 1 .
19.16.24 R a ( 𝐛 ; 𝐳 ) = z 1 a b 1 B ( b 1 , a b 1 ) 0 t b 1 1 ( t + z 1 ) a R a ( 𝐛 ; 0 , t + z 2 , , t + z n ) d t , a > b 1 , a + a > b 1 > 0 .
12: 29.18 Mathematical Applications
β = K + i β , 0 β 2 K , 0 γ 4 K ,
13: 17.13 Integrals
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
14: 19.23 Integral Representations
19.23.8 R a ( 𝐛 ; 𝐳 ) = 2 B ( b 1 , b 2 ) 0 π / 2 ( z 1 cos 2 θ + z 2 sin 2 θ ) a ( cos θ ) 2 b 1 1 ( sin θ ) 2 b 2 1 d θ , b 1 , b 2 > 0 ; z 1 , z 2 > 0 .
19.23.10 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 1 u a 1 ( 1 u ) a 1 j = 1 n ( 1 u + u z j ) b j d u , a , a > 0 ; a + a = j = 1 n b j ; z j ( , 0 ] .
15: 17.6 ϕ 1 2 Function
16: 19.1 Special Notation
All derivatives are denoted by differentials, not by primes. The first set of main functions treated in this chapter are Legendre’s complete integrals …of the first, second, and third kinds, respectively, and Legendre’s incomplete integralsHowever, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF. … The first three functions are incomplete integrals of the first, second, and third kinds, and the cel function includes complete integrals of all three kinds.
17: 19.29 Reduction of General Elliptic Integrals
19.29.7 y x a α + b α t a δ + b δ t d t s ( t ) = 2 3 d α β d α γ R D ( U α β 2 , U α γ 2 , U α δ 2 ) + 2 X α Y α X δ Y δ U α δ , U α δ 0 .
19.29.8 y x a α + b α t a 5 + b 5 t d t s ( t ) = 2 3 d α β d α γ d α δ d α 5 R J ( U 12 2 , U 13 2 , U 23 2 , U α 5 2 ) + 2 R C ( S α 5 2 , Q α 5 2 ) , S α 5 2 ( , 0 ) ,
19.29.16 b β b γ I ( 𝐞 α ) = d α β d α γ I ( 𝐞 α ) + 2 b α ( s ( x ) a α + b α x s ( y ) a α + b α y ) ,
18: 18.10 Integral Representations
18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
18.10.3 P n ( α , β ) ( cos θ ) P n ( α , β ) ( 1 ) = 2 Γ ( α + 1 ) π 1 2 Γ ( α β ) Γ ( β + 1 2 ) 0 1 0 π ( ( cos 1 2 θ ) 2 r 2 ( sin 1 2 θ ) 2 + i r sin θ cos ϕ ) n ( 1 r 2 ) α β 1 r 2 β + 1 ( sin ϕ ) 2 β d ϕ d r , α > β > 1 2 .
18.10.4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ , α > 1 2 .
19: 19.14 Reduction of General Elliptic Integrals
19.14.4 y x d t ( a 1 + b 1 t 2 ) ( a 2 + b 2 t 2 ) = 1 γ α F ( ϕ , k ) , k 2 = ( γ β ) / ( γ α ) .
20: 32.9 Other Elementary Solutions
Similar results hold when δ = 0 and β γ 0 . P III  with β = δ = 0 has a first integral P III  with α = β = γ = δ = 0 , has the general solution w ( z ) = C z μ , with C and μ arbitrary constants. … P V , with γ = δ = 0 , has a first integralDubrovin and Mazzocco (2000) classifies all algebraic solutions for the special case of P VI  with β = γ = 0 , δ = 1 2 . …