About the Project

Euler–Poisson differential equations

AdvancedHelp

(0.003 seconds)

4 matching pages

1: 19.18 Derivatives and Differential Equations
and also a system of n ( n 1 ) / 2 EulerPoisson differential equations (of which only n 1 are independent): … The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). …
2: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996) Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • H. Hochstadt (1964) Differential Equations: A Modern Approach. Holt, Rinehart and Winston, New York.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • C. Hunter (1981) Two Parametric Eigenvalue Problems of Differential Equations. In Spectral Theory of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Stud., Vol. 55, pp. 233–241.
  • 3: Bibliography T
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1962a) Eigenfunction expansions associated with second-order differential equations. Part I. Second edition, Clarendon Press, Oxford.
  • C. A. Tracy and H. Widom (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Phys. A 244 (1-4), pp. 402–413.
  • C. L. Tretkoff and M. D. Tretkoff (1984) Combinatorial Group Theory, Riemann Surfaces and Differential Equations. In Contributions to Group Theory, Contemp. Math., Vol. 33, pp. 467–519.
  • 4: Errata
  • Equation (18.35.5)
    18.35.5 1 1 P n ( λ ) ( x ; a , b ) P m ( λ ) ( x ; a , b ) w ( λ ) ( x ; a , b ) d x = Γ ( 2 λ + n ) n ! ( λ + a + n ) δ n , m , a b a , λ > 0

    This equation was updated to give the full normalization. Previously the constraints on a , b and λ were given in (18.35.6) and included λ > 1 2 . The case 1 2 < λ 0 is now discussed in (18.35.6_2)–(18.35.6_4).

  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Rearrangement

    In previous versions of the DLMF, in §8.18(ii), the notation Γ ~ ( z ) was used for the scaled gamma function Γ ( z ) . Now in §8.18(ii), we adopt the notation which was introduced in Version 1.1.7 (October 15, 2022) and correspondingly, Equation (8.18.13) has been removed. In place of Equation (8.18.13), it is now mentioned to see (5.11.3).

  • Equations (10.15.1), (10.38.1)

    These equations have been generalized to include the additional cases of J ν ( z ) / ν , I ν ( z ) / ν , respectively.

  • Equation (17.13.3)
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β )

    Originally the differential was identified incorrectly as d q t ; the correct differential is d t .

    Reported 2011-04-08.