About the Project

Euler–Maclaurin

AdvancedHelp

(0.002 seconds)

11—20 of 22 matching pages

11: 31.3 Basic Solutions
If the other exponent is not a positive integer, that is, if γ 0 , 1 , 2 , , then from §2.7(i) it follows that H ( a , q ; α , β , γ , δ ; z ) exists, is analytic in the disk | z | < 1 , and has the Maclaurin expansion …
12: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.5 e ± π i a 2 i sin ( π a ) Q ( a , z e ± π i ) = ± 1 2 erfc ( ± i η a / 2 ) i T ( a , η ) ,
8.12.6 z a γ ( a , z ) = cos ( π a ) 2 sin ( π a ) ( e 1 2 a η 2 π F ( η a / 2 ) + T ( a , η ) ) ,
where g k , k = 0 , 1 , 2 , , are the coefficients that appear in the asymptotic expansion (5.11.3) of Γ ( z ) . The right-hand sides of equations (8.12.9), (8.12.10) have removable singularities at η = 0 , and the Maclaurin series expansion of c k ( η ) is given by … Lastly, a uniform approximation for Γ ( a , a x ) for large a , with error bounds, can be found in Dunster (1996a). …
13: 9.12 Scorer Functions
9.12.6 Gi ( 0 ) = 1 2 Hi ( 0 ) = 1 3 Bi ( 0 ) = 1 / ( 3 7 / 6 Γ ( 2 3 ) ) = 0.20497 55424 ,
§9.12(vi) Maclaurin Series
9.12.24 Hi ( z ) = 3 2 / 3 2 π 2 i i i Γ ( 1 3 + 1 3 t ) Γ ( t ) ( 3 1 / 3 e π i z ) t d t ,
where the integration contour separates the poles of Γ ( 1 3 + 1 3 t ) from those of Γ ( t ) . … where γ is Euler’s constant (§5.2(ii)). …
14: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
15.2.1 F ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s ( c ) s s ! z s = 1 + a b c z + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) 2 ! z 2 + = Γ ( c ) Γ ( a ) Γ ( b ) s = 0 Γ ( a + s ) Γ ( b + s ) Γ ( c + s ) s ! z s ,
15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
15.2.3 𝐅 ( a , b c ; x + i 0 ) 𝐅 ( a , b c ; x i 0 ) = 2 π i Γ ( a ) Γ ( b ) ( x 1 ) c a b 𝐅 ( c a , c b c a b + 1 ; 1 x ) , x > 1 .
In that case we are using interpretation (15.2.6) since with interpretation (15.2.5) we would obtain that F ( m , b ; m ; z ) is equal to the first m + 1 terms of the Maclaurin series for ( 1 z ) b .
15: 4.19 Maclaurin Series and Laurent Series
§4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)). …
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
16: 18.17 Integrals
18.17.14 x α + μ L n ( α + μ ) ( x ) Γ ( α + μ + n + 1 ) = 0 x y α L n ( α ) ( y ) Γ ( α + n + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 .
For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
18.17.16_5 1 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) e i x y d x = 2 π i n Γ ( n + 2 λ ) J n + λ ( y ) n ! Γ ( λ ) ( 2 y ) λ ,
18.17.17 0 1 ( 1 x 2 ) λ 1 2 C 2 n ( λ ) ( x ) cos ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ ) J λ + 2 n ( y ) ( 2 n ) ! Γ ( λ ) ( 2 y ) λ ,
18.17.37 0 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) x z 1 d x = π  2 1 2 λ z Γ ( n + 2 λ ) Γ ( z ) n ! Γ ( λ ) Γ ( 1 2 + 1 2 n + λ + 1 2 z ) Γ ( 1 2 + 1 2 z 1 2 n ) , z > 0 .
17: 13.9 Zeros
13.9.9 z = ± ( 2 n + a ) π i + ln ( Γ ( a ) Γ ( b a ) ( ± 2 n π i ) b 2 a ) + O ( n 1 ln n ) ,
The same results apply for the n th partial sums of the Maclaurin series (13.2.2) of M ( a , b , z ) . …
13.9.11 T ( a , b ) = a + 1 , a < 0 , Γ ( a ) Γ ( a b + 1 ) > 0 ,
13.9.12 T ( a , b ) = a , a < 0 , Γ ( a ) Γ ( a b + 1 ) < 0 ,
18: Errata
  • Rearrangement

    In previous versions of the DLMF, in §8.18(ii), the notation Γ ~ ( z ) was used for the scaled gamma function Γ ( z ) . Now in §8.18(ii), we adopt the notation which was introduced in Version 1.1.7 (October 15, 2022) and correspondingly, Equation (8.18.13) has been removed. In place of Equation (8.18.13), it is now mentioned to see (5.11.3).

  • Expansion

    §4.13 has been enlarged. The Lambert W -function is multi-valued and we use the notation W k ( x ) , k , for the branches. The original two solutions are identified via Wp ( x ) = W 0 ( x ) and Wm ( x ) = W ± 1 ( x 0 i ) .

    Other changes are the introduction of the Wright ω -function and tree T -function in (4.13.1_2) and (4.13.1_3), simplification formulas (4.13.3_1) and (4.13.3_2), explicit representation (4.13.4_1) for d n W d z n , additional Maclaurin series (4.13.5_1) and (4.13.5_2), an explicit expansion about the branch point at z = e 1 in (4.13.9_1), extending the number of terms in asymptotic expansions (4.13.10) and (4.13.11), and including several integrals and integral representations for Lambert W -functions in the end of the section.

  • Subsection 25.2(ii) Other Infinite Series

    It is now mentioned that (25.2.5), defines the Stieltjes constants γ n . Consequently, γ n in (25.2.4), (25.6.12) are now identified as the Stieltjes constants.

  • Table 5.4.1

    The table of extrema for the Euler gamma function Γ had several entries in the x n column that were wrong in the last 2 or 3 digits. These have been corrected and 10 extra decimal places have been included.

    n x n Γ ( x n )
    0 1.46163 21449 68362 34126 0.88560 31944 10888 70028
    1 0.50408 30082 64455 40926 3.54464 36111 55005 08912
    2 1.57349 84731 62390 45878 2.30240 72583 39680 13582
    3 2.61072 08684 44144 65000 0.88813 63584 01241 92010
    4 3.63529 33664 36901 09784 0.24512 75398 34366 25044
    5 4.65323 77617 43142 44171 0.05277 96395 87319 40076
    6 5.66716 24415 56885 53585 0.00932 45944 82614 85052
    7 6.67841 82130 73426 74283 0.00139 73966 08949 76730
    8 7.68778 83250 31626 03744 0.00018 18784 44909 40419
    9 8.69576 41638 16401 26649 0.00002 09252 90446 52667
    10 9.70267 25400 01863 73608 0.00000 21574 16104 52285

    Reported 2018-02-17 by David Smith.

  • Equation (17.13.3)
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β )

    Originally the differential was identified incorrectly as d q t ; the correct differential is d t .

    Reported 2011-04-08.

  • 19: 11.10 Anger–Weber Functions
    §11.10(iii) Maclaurin Series
    11.10.10 S 1 ( ν , z ) = k = 0 ( 1 ) k ( 1 2 z ) 2 k Γ ( k + 1 2 ν + 1 ) Γ ( k 1 2 ν + 1 ) ,
    11.10.11 S 2 ( ν , z ) = k = 0 ( 1 ) k ( 1 2 z ) 2 k + 1 Γ ( k + 1 2 ν + 3 2 ) Γ ( k 1 2 ν + 3 2 ) .
    11.10.22 𝐄 n ( z ) = 𝐇 n ( z ) + 1 π k = 0 m 1 Γ ( k + 1 2 ) Γ ( n + 1 2 k ) ( 1 2 z ) n 2 k 1 ,
    11.10.23 𝐄 n ( z ) = 𝐇 n ( z ) + ( 1 ) n + 1 π k = 0 m 2 Γ ( n k 1 2 ) Γ ( k + 3 2 ) ( 1 2 z ) n + 2 k + 1 ,
    20: 13.2 Definitions and Basic Properties
    The first two standard solutions are: …
    13.2.18 U ( a , b , z ) = Γ ( b 1 ) Γ ( a ) z 1 b + Γ ( 1 b ) Γ ( a b + 1 ) + O ( z 2 b ) , 1 b < 2 , b 1 ,
    13.2.19 U ( a , 1 , z ) = 1 Γ ( a ) ( ln z + ψ ( a ) + 2 γ ) + O ( z ln z ) ,
    13.2.42 U ( a , b , z ) = Γ ( 1 b ) Γ ( a b + 1 ) M ( a , b , z ) + Γ ( b 1 ) Γ ( a ) z 1 b M ( a b + 1 , 2 b , z ) .