About the Project

Euler%E2%80%93Maclaurin

AdvancedHelp

(0.002 seconds)

1—10 of 413 matching pages

1: 24.1 Special Notation
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • G. H. Hardy (1912) Note on Dr. Vacca’s series for γ . Quart. J. Math. 43, pp. 215–216.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • 3: 27.2 Functions
    This is the number of positive integers n that are relatively prime to n ; ϕ ( n ) is Euler’s totient. If ( a , n ) = 1 , then the Euler–Fermat theorem states that …The ϕ ( n ) numbers a , a 2 , , a ϕ ( n ) are relatively prime to n and distinct (mod n ). …Note that J 1 ( n ) = ϕ ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    4: 24.17 Mathematical Applications
    §24.17 Mathematical Applications
    EulerMaclaurin Summation Formula
    Euler Splines
    are called Euler splines of degree n . …
    5: 5.7 Series Expansions
    §5.7(i) Maclaurin and Taylor Series
    where c 1 = 1 , c 2 = γ , and …
    5.7.3 ln Γ ( 1 + z ) = ln ( 1 + z ) + z ( 1 γ ) + k = 2 ( 1 ) k ( ζ ( k ) 1 ) z k k , | z | < 2 .
    For 20D numerical values of the coefficients of the Maclaurin series for Γ ( z + 3 ) see Luke (1969b, p. 299). …
    5.7.6 ψ ( z ) = γ 1 z + k = 1 z k ( k + z ) = γ + k = 0 ( 1 k + 1 1 k + z ) ,
    6: 10.31 Power Series
    where ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)). …
    10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
    10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
    7: 31.3 Basic Solutions
    H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. If the other exponent is not a positive integer, that is, if γ 0 , 1 , 2 , , then from §2.7(i) it follows that H ( a , q ; α , β , γ , δ ; z ) exists, is analytic in the disk | z | < 1 , and has the Maclaurin expansion … Similarly, if γ 1 , 2 , 3 , , then the solution of (31.2.1) that corresponds to the exponent 1 γ at z = 0 is … When γ , linearly independent solutions can be constructed as in §2.7(i). … For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
    8: 24.18 Physical Applications
    §24.18 Physical Applications
    Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
    9: 12.12 Integrals
    12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
    12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
    12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
    12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
    For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …
    10: 25.2 Definition and Expansions
    where the Stieltjes constants γ n are defined via …
    §25.2(iii) Representations by the EulerMaclaurin Formula
    25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
    25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
    product over zeros ρ of ζ with ρ > 0 (see §25.10(i)); γ is Euler’s constant (§5.2(ii)).