Euler totient
(0.001 seconds)
1—10 of 13 matching pages
1: 27.16 Cryptography
…
►To do this, let denote the reciprocal of modulo , so that for some integer .
(Here is Euler’s totient (§27.2).)
By the Euler–Fermat theorem (27.2.8), ; hence .
But , so is the same as modulo .
…
2: 27.2 Functions
3: 27.3 Multiplicative Properties
4: 27.6 Divisor Sums
5: 27.21 Tables
…
►Glaisher (1940) contains four tables: Table I tabulates, for all : (a) the canonical factorization of into powers of primes; (b) the Euler totient
; (c) the divisor function ; (d) the sum of these divisors.
…6 lists , and for ; Table 24.
…
6: 27.8 Dirichlet Characters
…
►For any character , if and only if , in which case the Euler–Fermat theorem (27.2.8) implies .
There are exactly different characters (mod ), which can be labeled as .
…
►
27.8.6
…
7: 27.11 Asymptotic Formulas: Partial Sums
…
►
27.11.6
►
27.11.7
…
►
27.11.9
…
►
27.11.11
…
►The prime number theorem for
arithmetic progressions—an extension of (27.2.3) and first proved in de la Vallée Poussin (1896a, b)—states that if , then the number of primes with is asymptotic to as .
8: 27.5 Inversion Formulas
…
►
27.5.4
…
9: 27.7 Lambert Series as Generating Functions
…
►
27.7.4
…