About the Project

Euler sums (first, second, third)

AdvancedHelp

(0.007 seconds)

1—10 of 25 matching pages

1: 17.5 Ο• 0 0 , Ο• 0 1 , Ο• 1 1 Functions
β–Ί
Euler’s Second Sum
β–Ί
Euler’s First Sum
2: 10.2 Definitions
β–Ί
§10.2(ii) Standard Solutions
β–Ί
Bessel Function of the Second Kind (Weber’s Function)
β–Ί
Bessel Functions of the Third Kind (Hankel Functions)
β–ΊThese solutions of (10.2.1) are denoted by H Ξ½ ( 1 ) ⁑ ( z ) and H Ξ½ ( 2 ) ⁑ ( z ) , and their defining properties are given by … β–ΊThe principal branches of H Ξ½ ( 1 ) ⁑ ( z ) and H Ξ½ ( 2 ) ⁑ ( z ) are two-valued and discontinuous on the cut ph ⁑ z = ± Ο€ . …
3: 10.8 Power Series
β–ΊWhen Ξ½ is not an integer the corresponding expansions for Y Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) , and H Ξ½ ( 2 ) ⁑ ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). … β–Ίwhere ψ ⁑ ( x ) = Ξ“ ⁑ ( x ) / Ξ“ ⁑ ( x ) 5.2(i)). … β–Ί
10.8.2 Y 0 ⁑ ( z ) = 2 Ο€ ⁒ ( ln ⁑ ( 1 2 ⁒ z ) + Ξ³ ) ⁒ J 0 ⁑ ( z ) + 2 Ο€ ⁒ ( 1 4 ⁒ z 2 ( 1 ! ) 2 ( 1 + 1 2 ) ⁒ ( 1 4 ⁒ z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ⁒ ( 1 4 ⁒ z 2 ) 3 ( 3 ! ) 2 β‹― ) ,
β–Ίwhere Ξ³ is Euler’s constant (§5.2(ii)). … β–ΊThe corresponding results for H n ( 1 ) ⁑ ( z ) and H n ( 2 ) ⁑ ( z ) are obtained via (10.4.3) with Ξ½ = n . …
4: 16.13 Appell Functions
β–Ί
16.13.1 F 1 ⁑ ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.2 F 2 ⁑ ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 ,
β–Ί
16.13.3 F 3 ⁑ ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ⁒ ( α ) n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.4 F 4 ⁑ ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m + n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 .
β–ΊHere and elsewhere it is assumed that neither of the bottom parameters Ξ³ and Ξ³ is a nonpositive integer. …
5: 18.17 Integrals
β–ΊFor the Ferrers function 𝖰 n ⁑ ( x ) and Legendre function Q n ⁑ ( x ) see §§14.3(i) and 14.3(ii), with ΞΌ = 0 and Ξ½ = n . … β–Ίand three formulas similar to (18.17.9)–(18.17.11) by symmetry; compare the second row in Table 18.6.1. … β–ΊFor the beta function B ⁑ ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … β–Ίprovided that β„“ + m + n is even and the sum of any two of β„“ , m , n is not less than the third; otherwise the integral is zero. … β–Ίprovided that β„“ + m + n is even and the sum of any two of β„“ , m , n is not less than the third; otherwise the integral is zero. …
6: 19.5 Maclaurin and Related Expansions
β–Ίwhere F 1 ⁑ ( Ξ± ; Ξ² , Ξ² ; Ξ³ ; x , y ) is an Appell function (§16.13). … β–ΊCoefficients of terms up to Ξ» 49 are given in Lee (1990), along with tables of fractional errors in K ⁑ ( k ) and E ⁑ ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9). … β–ΊAn infinite series for ln ⁑ K ⁑ ( k ) is equivalent to the infinite product … β–ΊSeries expansions of F ⁑ ( Ο• , k ) and E ⁑ ( Ο• , k ) are surveyed and improved in Van de Vel (1969), and the case of F ⁑ ( Ο• , k ) is summarized in Gautschi (1975, §1.3.2). For series expansions of Ξ  ⁑ ( Ο• , Ξ± 2 , k ) when | Ξ± 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
7: 10.43 Integrals
β–Ίwhere ψ = Ξ“ / Ξ“ and Ξ³ is Euler’s constant (§5.2). … β–Ί
10.43.22 0 t ΞΌ 1 ⁒ e a ⁒ t ⁒ K Ξ½ ⁑ ( t ) ⁒ d t = { ( 1 2 ⁒ Ο€ ) 1 2 ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ⁒ ( 1 a 2 ) 1 2 ⁒ ΞΌ + 1 4 ⁒ 𝖯 Ξ½ 1 2 ΞΌ + 1 2 ⁑ ( a ) , 1 < a < 1 , ( 1 2 ⁒ Ο€ ) 1 2 ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ⁒ ( a 2 1 ) 1 2 ⁒ ΞΌ + 1 4 ⁒ P Ξ½ 1 2 ΞΌ + 1 2 ⁑ ( a ) , ⁑ a 0 , a 1 .
β–ΊFor the second equation there is a cut in the a -plane along the interval [ 0 , 1 ] , and all quantities assume their principal values (§4.2(i)). For the Ferrers function 𝖯 and the associated Legendre function P , see §§14.3(i) and 14.21(i). … β–ΊFor collections of integrals of the functions I Ξ½ ⁑ ( z ) and K Ξ½ ⁑ ( z ) , including integrals with respect to the order, see Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofreiter (1950, pp. 197–203), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1972), Oberhettinger (1974, §§1.11 and 2.7), Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Oberhettinger and Badii (1973, §§1.15 and 2.13), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16, 3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15, 3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson (1944, Chapter 13), and Wheelon (1968).
8: 15.12 Asymptotic Approximations
β–Ί β–Ί β–Ί
15.12.4 ( e t 1 t ) b 1 ⁒ e t ⁒ ( 1 c ) ⁒ ( 1 z + z ⁒ e t ) a = s = 0 q s ⁑ ( z ) ⁒ t s .
β–Ί
15.12.5 𝐅 ⁑ ( a + Ξ» , b Ξ» c ; 1 2 1 2 ⁒ z ) = 2 ( a + b 1 ) / 2 ⁒ ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ⁒ ΞΆ ⁒ sinh ⁑ ΞΆ ⁒ ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) 1 c ⁒ ( I c 1 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) ⁒ ( 1 + O ⁑ ( Ξ» 2 ) ) + I c 2 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) 2 ⁒ Ξ» + a b ⁒ ( ( c 1 2 ) ⁒ ( c 3 2 ) ⁒ ( 1 ΞΆ coth ⁑ ΞΆ ) + 1 2 ⁒ ( 2 ⁒ c a b 1 ) ⁒ ( a + b 1 ) ⁒ tanh ⁑ ( 1 2 ⁒ ΞΆ ) + O ⁑ ( Ξ» 2 ) ) ) ,
β–ΊFor I Ξ½ ⁑ ( z ) see §10.25(ii). …
9: 30.11 Radial Spheroidal Wave Functions
β–Ίwith J Ξ½ , Y Ξ½ , H Ξ½ ( 1 ) , and H Ξ½ ( 2 ) as in §10.2(ii). Then solutions of (30.2.1) with ΞΌ = m and Ξ» = Ξ» n m ⁑ ( Ξ³ 2 ) are given by …Here a n , k m ⁑ ( Ξ³ 2 ) is defined by (30.8.2) and (30.8.6), and … β–ΊFor fixed Ξ³ , as z in the sector | ph ⁑ z | Ο€ Ξ΄ ( < Ο€ ), … β–Ίwhere …
10: 18.3 Definitions
β–ΊIn this chapter, formulas for the Chebyshev polynomials of the second, third, and fourth kinds will not be given as extensively as those of the first kind. … β–ΊWhen j = k 0 the sum in (18.3.1) is 1 2 ⁒ ( N + 1 ) . When j = k = 0 the sum in (18.3.1) is N + 1 . β–ΊFor proofs of these results and for similar properties of the Chebyshev polynomials of the second, third, and fourth kinds see Mason and Handscomb (2003, §4.6). β–ΊFor another version of the discrete orthogonality property of the polynomials T n ⁑ ( x ) see (3.11.9). …