About the Project
NIST

Euler splines

AdvancedHelp

(0.002 seconds)

3 matching pages

1: 24.17 Mathematical Applications
Euler Splines
The functions
24.17.3 S n ( x ) = E ~ n ( x + 1 2 n + 1 2 ) E ~ n ( 1 2 n + 1 2 ) , n = 0 , 1 , ,
are called Euler splines of degree n . …
2: 3.11 Approximation Techniques
For splines based on Bernoulli and Euler polynomials, see §24.17(ii). …
3: Bibliography C
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • M. Carmignani and A. Tortorici Macaluso (1985) Calcolo delle funzioni speciali Γ ( x ) , log Γ ( x ) , β ( x , y ) , erf ( x ) , erfc ( x ) alle alte precisioni. Atti Accad. Sci. Lett. Arti Palermo Ser. (5) 2(1981/82) (1), pp. 7–25 (Italian).
  • R. F. Christy and I. Duck (1961) γ rays from an extranuclear direct capture process. Nuclear Physics 24 (1), pp. 89–101.
  • C. K. Chui (1988) Multivariate Splines. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 54, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • T. Clausen (1828) Über die Fälle, wenn die Reihe von der Form y = 1 + α 1 β γ x + α α + 1 1 2 β β + 1 γ γ + 1 x 2 + etc. ein Quadrat von der Form z = 1 + α 1 β γ δ ϵ x + α α + 1 1 2 β β + 1 γ γ + 1 δ δ + 1 ϵ ϵ + 1 x 2 + etc. hat. J. Reine Angew. Math. 3, pp. 89–91.