About the Project

Economical prescriptions https://simplemedrx.top

AdvancedHelp

Did you mean econometricaical prescriptions https://simplex ?

(0.007 seconds)

1—10 of 751 matching pages

1: 8.21 Generalized Sine and Cosine Integrals
8.21.16 Si ( a , z ) = z a k = 0 ( 2 k + 3 2 ) ( 1 1 2 a ) k ( 1 2 + 1 2 a ) k + 1 𝗃 2 k + 1 ( z ) , a 1 , 3 , 5 , ,
8.21.17 Ci ( a , z ) = z a k = 0 ( 2 k + 1 2 ) ( 1 2 1 2 a ) k ( 1 2 a ) k + 1 𝗃 2 k ( z ) , a 0 , 2 , 4 , .
8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
When | ph z | < 1 2 π , …
2: 4.9 Continued Fractions
4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
e z = 1 1 z 1 + z 2 z 3 + z 2 z 5 + z 2
= 1 + z 1 z 2 + z 3 z 2 + z 5 z 2 + z 7
= 1 + z 1 ( z / 2 ) + z 2 / ( 4 3 ) 1 + z 2 / ( 4 15 ) 1 + z 2 / ( 4 35 ) 1 + z 2 / ( 4 ( 4 n 2 1 ) ) 1 +
3: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
4.17.1 lim z 0 sin z z = 1 ,
4.17.2 lim z 0 tan z z = 1 .
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
4: 10.10 Continued Fractions
10.10.1 J ν ( z ) J ν 1 ( z ) = 1 2 ν z 1 1 2 ( ν + 1 ) z 1 1 2 ( ν + 2 ) z 1 , z 0 ,
10.10.2 J ν ( z ) J ν 1 ( z ) = 1 2 z / ν 1 1 4 z 2 / ( ν ( ν + 1 ) ) 1 1 4 z 2 / ( ( ν + 1 ) ( ν + 2 ) ) 1 , ν 0 , 1 , 2 , .
5: 10.33 Continued Fractions
10.33.1 I ν ( z ) I ν 1 ( z ) = 1 2 ν z 1 + 1 2 ( ν + 1 ) z 1 + 1 2 ( ν + 2 ) z 1 + , z 0 ,
10.33.2 I ν ( z ) I ν 1 ( z ) = 1 2 z / ν 1 + 1 4 z 2 / ( ν ( ν + 1 ) ) 1 + 1 4 z 2 / ( ( ν + 1 ) ( ν + 2 ) ) 1 + , ν 0 , 1 , 2 , .
6: 17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
17.10.4 ψ 2 2 ( e , f a q / c , a q / d ; q , a q e f ) = ( q / c , q / d , a q / e , a q / f ; q ) ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n = ( 1 a q 2 n ) ( c , d , e , f ; q ) n ( 1 a ) ( a q / c , a q / d , a q / e , a q / f ; q ) n ( q a 3 c d e f ) n q n 2 .
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
17.10.6 ( a q / b , a q / c , a q / d , a q / e , a q / f , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) , q / ( a f ) ; q ) ( a g , a h , a k , g / a , h / a , k / a , q a 2 , q / a 2 ; q ) ψ 10 10 ( q a , q a , b a , c a , d a , e a , f a , g a , h a , k a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g , a q / h , a q / k ; q , q 3 b c d e f g h k ) = ( q , q / ( b g ) , q / ( c g ) , q / ( d g ) , q / ( e g ) , q / ( f g ) , q g / b , q g / c , q g / d , q g / e , q g / f ; q ) ( g h , g k , h / g , k / g , a g , q / ( a g ) , g / a , a q / g , q g 2 ; q ) ϕ 9 10 ( g 2 , q g , q g , g b , g c , g d , g e , g f , g h , g k g , g , q g / b , q g / c , q g / d , q g / e , q g / f , q g / h , q g / k ; q , q 3 b c d e f g h k ) + idem ( g ; h , k ) .
7: 18.13 Continued Fractions
18.13.1 1 x + 1 2 x + 1 2 x + ,
18.13.2 1 2 x + 1 2 x + 1 2 x + .
18.13.3 a 1 x + 1 2 3 2 x + 2 3 5 3 x + 3 4 7 4 x + ,
18.13.4 a 1 1 x + 1 2 1 2 ( 3 x ) + 2 3 1 3 ( 5 x ) + 3 4 1 4 ( 7 x ) + ,
18.13.5 1 2 x + 2 2 x + 4 2 x + 6 2 x + .
8: 17.9 Further Transformations of ϕ r r + 1 Functions
17.9.12 ϕ 2 3 ( a , b , c d , e ; q , d e a b c ) = ( e / b , e / c , c q / a , q / d ; q ) ( e , c q / d , q / a , e / ( b c ) ; q ) ϕ 2 3 ( c , d / a , c q / e c q / a , b c q / e ; q , b q d ) ( q / d , e q / d , b , c , d / a , d e / ( b c q ) , b c q 2 / ( d e ) ; q ) ( d / q , e , b q / d , c q / d , q / a , e / ( b c ) , b c q / e ; q ) ϕ 2 3 ( a q / d , b q / d , c q / d q 2 / d , e q / d ; q , d e a b c ) ,
17.9.13 ϕ 2 3 ( a , b , c d , e ; q , d e a b c ) = ( e / b , e / c ; q ) ( e , e / ( b c ) ; q ) ϕ 2 3 ( d / a , b , c d , b c q / e ; q , q ) + ( d / a , b , c , d e / ( b c ) ; q ) ( d , e , b c / e , d e / ( a b c ) ; q ) ϕ 2 3 ( e / b , e / c , d e / ( a b c ) d e / ( b c ) , e q / ( b c ) ; q , q ) .
17.9.14 ϕ 3 4 ( q n , a , b , c d , e , f ; q , q ) = ( e / a , f / a ; q ) n ( e , f ; q ) n a n ϕ 3 4 ( q n , a , d / b , d / c d , a q 1 n / e , a q 1 n / f ; q , q ) = ( a , e f / ( a b ) , e f / ( a c ) ; q ) n ( e , f , e f / ( a b c ) ; q ) n ϕ 3 4 ( q n , e / a , f / a , e f / ( a b c ) e f / ( a b ) , e f / ( a c ) , q 1 n / a ; q , q ) .
17.9.16 ϕ 7 8 ( a , q a 1 2 , q a 1 2 , b , c , d , e , f a 1 2 , a 1 2 , a q / b , a q / c , a q / d , a q / e , a q / f ; q , a 2 q 2 b c d e f ) = ( a q , a q / ( d e ) , a q / ( d f ) , a q / ( e f ) ; q ) ( a q / d , a q / e , a q / f , a q / ( d e f ) ; q ) ϕ 3 4 ( a q / ( b c ) , d , e , f a q / b , a q / c , d e f / a ; q , q ) + ( a q , a q / ( b c ) , d , e , f , a 2 q 2 / ( b d e f ) , a 2 q 2 / ( c d e f ) ; q ) ( a q / b , a q / c , a q / d , a q / e , a q / f , a 2 q 2 / ( b c d e f ) , d e f / ( a q ) ; q ) ϕ 3 4 ( a q / ( d e ) , a q / ( d f ) , a q / ( e f ) , a 2 q 2 / ( b c d e f ) a 2 q 2 / ( b d e f ) , a 2 q 2 / ( c d e f ) , a q 2 / ( d e f ) ; q , q ) .
17.9.17 ϕ 2 3 ( a , b , c a q / b , a q / c ; q , a q z b c ) = ( a z ; q ) ( z ; q ) ϕ 4 5 ( a 1 2 , a 1 2 , ( a q ) 1 2 , ( a q ) 1 2 , a q / ( b c ) a q / b , a q / c , a z , q / z ; q , q ) .
9: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
10: 10.67 Asymptotic Expansions for Large Argument
10.67.9 ber 2 x + bei 2 x e x 2 2 π x ( 1 + 1 4 2 1 x + 1 64 1 x 2 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
10.67.10 ber x bei x ber x bei x e x 2 2 π x ( 1 2 + 1 8 1 x + 9 64 2 1 x 2 + 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
10.67.11 ber x ber x + bei x bei x e x 2 2 π x ( 1 2 3 8 1 x 15 64 2 1 x 2 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,
10.67.14 ker x kei x ker x kei x π 2 x e x 2 ( 1 2 1 8 1 x + 9 64 2 1 x 2 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
10.67.15 ker x ker x + kei x kei x π 2 x e x 2 ( 1 2 + 3 8 1 x 15 64 2 1 x 2 + 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,