About the Project

Dougall very well-poised sum

AdvancedHelp

(0.004 seconds)

1—10 of 384 matching pages

1: 16.4 Argument Unity
It is very well-poised if it is well-poised and a 1 = b 1 + 1 . …
Dixon’s Well-Poised Sum
Rogers–Dougall Very Well-Poised Sum
Dougall’s Very Well-Poised Sum
2: 17.4 Basic Hypergeometric Functions
In these references the factor ( ( 1 ) n q ( n 2 ) ) s r is not included in the sum. …
17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
The series (17.4.1) is said to be well-poised when r = s and … The series (17.4.1) is said to be very-well-poised when r = s , (17.4.11) is satisfied, and …
3: 17.9 Further Transformations of ϕ r r + 1 Functions
Bailey’s Transformation of Very-Well-Poised ϕ 7 8
§17.9(iv) Bibasic Series
17.9.19 n = 0 ( a ; q 2 ) n ( b ; q ) n ( q 2 ; q 2 ) n ( c ; q ) n z n = ( b ; q ) ( a z ; q 2 ) ( c ; q ) ( z ; q 2 ) n = 0 ( c / b ; q ) 2 n ( z ; q 2 ) n b 2 n ( q ; q ) 2 n ( a z ; q 2 ) n + ( b ; q ) ( a z q ; q 2 ) ( c ; q ) ( z q ; q 2 ) n = 0 ( c / b ; q ) 2 n + 1 ( z q ; q 2 ) n b 2 n + 1 ( q ; q ) 2 n + 1 ( a z q ; q 2 ) n .
17.9.20 n = 0 ( a ; q k ) n ( b ; q ) k n z n ( q k ; q k ) n ( c ; q ) k n = ( b ; q ) ( a z ; q k ) ( c ; q ) ( z ; q k ) n = 0 ( c / b ; q ) n ( z ; q k ) n b n ( q ; q ) n ( a z ; q k ) n , k = 1 , 2 , 3 , .
4: Bibliography M
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • S. Moch, P. Uwer, and S. Weinzierl (2002) Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43 (6), pp. 3363–3386.
  • 5: 14.18 Sums
    §14.18 Sums
    §14.18(iii) Other Sums
    Dougall’s Expansion
    For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2000, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …
    6: 15.4 Special Cases
    Dougall’s Bilateral Sum
    15.4.25 n = Γ ( a + n ) Γ ( b + n ) Γ ( c + n ) Γ ( d + n ) = π 2 sin ( π a ) sin ( π b ) Γ ( c + d a b 1 ) Γ ( c a ) Γ ( d a ) Γ ( c b ) Γ ( d b ) .
    7: 17.7 Special Cases of Higher ϕ s r Functions
    Sum Related to (17.6.4)
    q -Pfaff–Saalschütz Sum
    F. H. Jackson’s q -Analog of Dougall’s F 6 7 ( 1 ) Sum
    Gasper–Rahman q -Analogs of the Karlsson–Minton Sums
    Gosper’s Bibasic Sum
    8: Bibliography D
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • 9: 27.19 Methods of Computation: Factorization
    The snfs can be applied only to numbers that are very close to a power of a very small base. …
    10: 17.18 Methods of Computation
    Method (2) is very powerful when applicable (Andrews (1976, Chapter 5)); however, it is applicable only rarely. …