Dougall very well-poised sum
(0.002 seconds)
1—10 of 404 matching pages
1: 16.4 Argument Unity
…
►It is very well-poised if it is well-poised and .
…
►
Dixon’s Well-Poised Sum
… ►Rogers–Dougall Very Well-Poised Sum
… ►Dougall’s Very Well-Poised Sum
…2: 17.4 Basic Hypergeometric Functions
…
►In these references the factor is not included in the sum.
…
►
17.4.3
…
►
17.4.5
…
►The series (17.4.1) is said to be well-poised when and
…
►The series (17.4.1) is said to be very-well-poised when , (17.4.11) is satisfied, and
…
3: 17.9 Further Transformations of Functions
…
►
Bailey’s Transformation of Very-Well-Poised
… ►§17.9(iv) Bibasic Series
… ►
17.9.19
►
17.9.20
.
4: Bibliography M
…
►
A -analog of the summation theorem for hypergeometric series well-poised in
.
Adv. in Math. 57 (1), pp. 14–33.
…
►
A -analog of hypergeometric series well-poised in and invariant -functions.
Adv. in Math. 58 (1), pp. 1–60.
…
►
Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions.
Ramanujan J. 6 (1), pp. 7–149.
…
►
New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function.
Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
…
►
Nested sums, expansion of transcendental functions, and multiscale multiloop integrals.
J. Math. Phys. 43 (6), pp. 3363–3386.
…
5: 14.18 Sums
§14.18 Sums
… ►§14.18(iii) Other Sums
… ►Dougall’s Expansion
… ►For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2015, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …6: 15.4 Special Cases
7: 17.7 Special Cases of Higher Functions
…
►
Sum Related to (17.6.4)
… ►-Pfaff–Saalschütz Sum
… ►F. H. Jackson’s -Analog of Dougall’s Sum
… ►Gasper–Rahman -Analogs of the Karlsson–Minton Sums
… ►Gosper’s Bibasic Sum
…8: Bibliography D
…
►
Sums of products of Bernoulli numbers.
J. Number Theory 60 (1), pp. 23–41.
…
►
A simple sum formula for Clebsch-Gordan coefficients.
Lett. Math. Phys. 5 (3), pp. 207–211.
…
►
On Vandermonde’s theorem, and some more general expansions.
Proc. Edinburgh Math. Soc. 25, pp. 114–132.
…
►
Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter.
SIAM J. Math. Anal. 21 (4), pp. 995–1018.
…