About the Project
NIST

Dougall expansion

AdvancedHelp

(0.001 seconds)

3 matching pages

1: 14.18 Sums
Dougall’s Expansion
2: Bibliography D
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • 3: 16.4 Argument Unity
    Rogers–Dougall Very Well-Poised Sum
    Dougall’s Very Well-Poised Sum
    The function F 2 3 ( a , b , c ; d , e ; 1 ) is analytic in the parameters a , b , c , d , e when its series expansion converges and the bottom parameters are not negative integers or zero. … This is Dougall’s bilateral sum; see Andrews et al. (1999, §2.8).