Dougall bilateral sum
(0.001 seconds)
1—10 of 375 matching pages
1: 16.4 Argument Unity
…
►
Rogers–Dougall Very Well-Poised Sum
… ►Dougall’s Very Well-Poised Sum
… ►Denote, formally, the bilateral hypergeometric function …This is Dougall’s bilateral sum; see Andrews et al. (1999, §2.8).2: 15.4 Special Cases
3: 17.1 Special Notation
§17.1 Special Notation
… ►The main functions treated in this chapter are the basic hypergeometric (or -hypergeometric) function , the bilateral basic hypergeometric (or bilateral -hypergeometric) function , and the -analogs of the Appell functions , , , and . … ►4: 14.18 Sums
§14.18 Sums
… ►§14.18(iii) Other Sums
… ►Dougall’s Expansion
… ►For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2015, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …5: 17.8 Special Cases of Functions
§17.8 Special Cases of Functions
… ►Ramanujan’s Summation
… ►These identities are all given in terms of sums and products of basic bilateral hypergeometric series. ►Bailey’s Bilateral Summations
… ►For similar formulas see Verma and Jain (1983).6: 17.18 Methods of Computation
§17.18 Methods of Computation
…7: 17.7 Special Cases of Higher Functions
…
►
Sum Related to (17.6.4)
… ►-Pfaff–Saalschütz Sum
… ►F. H. Jackson’s -Analog of Dougall’s Sum
… ►Gasper–Rahman -Analogs of the Karlsson–Minton Sums
… ►Gosper’s Bibasic Sum
…8: 17.10 Transformations of Functions
9: 17.4 Basic Hypergeometric Functions
§17.4 Basic Hypergeometric Functions
… ►In these references the factor is not included in the sum. … ►§17.4(ii) Functions
►
17.4.3
…
►
17.4.4
…
10: Bibliography D
…
►
Sums of products of Bernoulli numbers.
J. Number Theory 60 (1), pp. 23–41.
…
►
A simple sum formula for Clebsch-Gordan coefficients.
Lett. Math. Phys. 5 (3), pp. 207–211.
…
►
On Vandermonde’s theorem, and some more general expansions.
Proc. Edinburgh Math. Soc. 25, pp. 114–132.
…
►
Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter.
SIAM J. Math. Anal. 21 (4), pp. 995–1018.
…