Dixon well-poised sum
(0.000 seconds)
1—10 of 376 matching pages
1: 16.4 Argument Unity
…
►It is very well-poised if it is well-poised and .
…
►
Dixon’s Well-Poised Sum
… ►Rogers–Dougall Very Well-Poised Sum
… ►Dougall’s Very Well-Poised Sum
…2: 17.4 Basic Hypergeometric Functions
…
►In these references the factor is not included in the sum.
…
►
17.4.3
…
►
17.4.5
…
►The series (17.4.1) is said to be well-poised when and
…
►The series (17.4.1) is said to be very-well-poised when , (17.4.11) is satisfied, and
…
3: 17.9 Further Transformations of Functions
…
►
Bailey’s Transformation of Very-Well-Poised
… ►§17.9(iv) Bibasic Series
… ►
17.9.19
►
17.9.20
.
4: Bibliography M
…
►
A -analog of the summation theorem for hypergeometric series well-poised in
.
Adv. in Math. 57 (1), pp. 14–33.
…
►
A -analog of hypergeometric series well-poised in and invariant -functions.
Adv. in Math. 58 (1), pp. 1–60.
…
►
Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions.
Ramanujan J. 6 (1), pp. 7–149.
…
►
New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function.
Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
…
►
Nested sums, expansion of transcendental functions, and multiscale multiloop integrals.
J. Math. Phys. 43 (6), pp. 3363–3386.
…
5: Peter A. Clarkson
…
► Dixon and J.
…
6: 17.7 Special Cases of Higher Functions
…
►
Sum Related to (17.6.4)
… ►-Pfaff–Saalschütz Sum
… ►F. H. Jackson’s Terminating -Analog of Dixon’s Sum
… ►-Analog of Dixon’s Sum
… ►Gosper’s Bibasic Sum
…7: Bibliography D
…
►
Sums of products of Bernoulli numbers.
J. Number Theory 60 (1), pp. 23–41.
…
►
A simple sum formula for Clebsch-Gordan coefficients.
Lett. Math. Phys. 5 (3), pp. 207–211.
…
►
Infinite integrals in the theory of Bessel functions.
Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
►
From Nonlinearity to Coherence: Universal Features of Nonlinear Behaviour in Many-Body Physics.
Oxford University Press, Oxford.
…
►
Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter.
SIAM J. Math. Anal. 21 (4), pp. 995–1018.
…