About the Project

Dirac%20delta%20distribution

AdvancedHelp

(0.003 seconds)

1—10 of 321 matching pages

1: 1.16 Distributions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , …
§1.16(iii) Dirac Delta Distribution
The Dirac delta distribution is singular. … Since 2 π ( δ ) = 1 , we have …
2: 1.17 Integral and Series Representations of the Dirac Delta
§1.17 Integral and Series Representations of the Dirac Delta
In applications in physics, engineering, and applied mathematics, (see Friedman (1990)), the Dirac delta distribution1.16(iii)) is historically and customarily replaced by the Dirac delta (or Dirac delta function) δ ( x ) . …
Sine and Cosine Functions
Coulomb Functions (§33.14(iv))
Airy Functions (§9.2)
3: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 4: 25.12 Polylogarithms
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    §25.12(iii) Fermi–Dirac and Bose–Einstein Integrals
    The Fermi–Dirac and Bose–Einstein integrals are defined by … In terms of polylogarithms … For a uniform asymptotic approximation for F s ( x ) see Temme and Olde Daalhuis (1990).
    5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: 25.17 Physical Applications
    Analogies exist between the distribution of the zeros of ζ ( s ) on the critical line and of semiclassical quantum eigenvalues. … The zeta function arises in the calculation of the partition function of ideal quantum gases (both Bose–Einstein and Fermi–Dirac cases), and it determines the critical gas temperature and density for the Bose–Einstein condensation phase transition in a dilute gas (Lifshitz and Pitaevskiĭ (1980)). …
    7: Bibliography P
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral. In Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), A. Cuyt (Ed.), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • P. C. B. Phillips (1986) The exact distribution of the Wald statistic. Econometrica 54 (4), pp. 881–895.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 8: Bibliography C
  • B. C. Carlson (1961a) Ellipsoidal distributions of charge or mass. J. Mathematical Phys. 2, pp. 441–450.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 9: 14.30 Spherical and Spheroidal Harmonics
    14.30.8 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) ¯ Y l 2 , m 2 ( θ , ϕ ) sin θ d θ d ϕ = δ l 1 , l 2 δ m 1 , m 2 .
    Distributional Completeness
    For a series representation of the product of two Dirac deltas in terms of products of spherical harmonics see §1.17(iii). …
    10: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • J. E. Littlewood (1914) Sur la distribution des nombres premiers. Comptes Rendus de l’Academie des Sciences, Paris 158, pp. 1869–1872 (French).