About the Project

Dedekind%20sums

AdvancedHelp

(0.002 seconds)

1—10 of 429 matching pages

1: 27.14 Unrestricted Partitions
and s ( h , k ) is a Dedekind sum given by …
§27.14(iv) Relation to Modular Functions
Dedekind sums occur in the transformation theory of the Dedekind modular function η ( τ ) , defined by …where ε = exp ( π i ( ( ( a + d ) / ( 12 c ) ) s ( d , c ) ) ) and s ( d , c ) is given by (27.14.11). For further properties of the function η ( τ ) see §§23.1523.19. …
2: 23.17 Elementary Properties
η ( i ) = Γ ( 1 4 ) 2 π 3 / 4 ,
η ( e π i / 3 ) = 3 1 / 8 ( Γ ( 1 3 ) ) 3 / 2 2 π e π i / 24 .
23.17.6 η ( τ ) = n = ( 1 ) n q ( 6 n + 1 ) 2 / 12 .
23.17.8 η ( τ ) = q 1 / 12 n = 1 ( 1 q 2 n ) ,
3: 23.18 Modular Transformations
Dedekind’s Eta Function
23.18.5 η ( 𝒜 τ ) = ε ( 𝒜 ) ( i ( c τ + d ) ) 1 / 2 η ( τ ) ,
23.18.7 s ( d , c ) = r = 1 c 1 r c ( d r c d r c 1 2 ) , c > 0 .
Here s ( d , c ) is a Dedekind sum. …Note that η ( τ ) is of level 1 2 . …
4: 23.16 Graphics
See Figures 23.16.123.16.3 for the modular functions λ , J , and η . …
See accompanying text
Figure 23.16.1: Modular functions λ ( i y ) , J ( i y ) , η ( i y ) for 0 y 3 . … Magnify
See accompanying text
Figure 23.16.3: Dedekind’s eta function η ( x + i y ) for 0.0625 x 0.0625 , 0.0001 y 0.07 . Magnify 3D Help
5: 23.19 Interrelations
23.19.1 λ ( τ ) = 16 ( η 2 ( 2 τ ) η ( 1 2 τ ) η 3 ( τ ) ) 8 ,
6: 23.15 Definitions
§23.15(ii) Functions λ ( τ ) , J ( τ ) , η ( τ )
Dedekind’s Eta Function (or Dedekind Modular Function)
7: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • 8: Ranjan Roy
    He also authored another two advanced mathematics books: Sources in the development of mathematics (Roy, 2011), Elliptic and modular functions from Gauss to Dedekind to Hecke (Roy, 2017). …
    9: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • 10: 23.1 Special Notation
    The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …