About the Project
NIST

De Moivre theorem

AdvancedHelp

(0.002 seconds)

1—10 of 177 matching pages

1: 4.21 Identities
De Moivre’s Theorem
2: Bibliography D
  • M. D’Ocagne (1904) Sur une classe de nombres rationnels réductibles aux nombres de Bernoulli. Bull. Sci. Math. (2) 28, pp. 29–32 (French).
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • 3: 28.27 Addition Theorems
    §28.27 Addition Theorems
    Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …
    4: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • L. Robin (1959) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III. Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • 5: Bibliography C
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • R. Cazenave (1969) Intégrales et Fonctions Elliptiques en Vue des Applications. Préface de Henri Villat. Publications Scientifiques et Techniques du Ministère de l’Air, No. 452, Centre de Documentation de l’Armement, Paris.
  • P. L. Chebyshev (1851) Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mem. Ac. Sc. St. Pétersbourg 6, pp. 141–157.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.
  • 6: 16 Generalized Hypergeometric Functions & Meijer G-Function
    7: Amparo Gil
    … …  1969 in Villarrobledo, Spain) is Associate Professor in the Department of Applied Mathematics and Computer Science in the Universidad de Cantabria, Spain. …
    8: Bibliography L
  • A. M. Legendre (1808) Essai sur la Théorie des Nombres. 2nd edition, Courcier, Paris.
  • A. M. Legendre (1825) Traité des fonctions elliptiques et des intégrales Eulériennes. Huzard-Courcier, Paris.
  • E. Lindelöf (1905) Le Calcul des Résidus et ses Applications à la Théorie des Fonctions. Gauthier-Villars, Paris (French).
  • J. E. Littlewood (1914) Sur la distribution des nombres premiers. Comptes Rendus de l’Academie des Sciences, Paris 158, pp. 1869–1872 (French).
  • É. Lucas (1891) Théorie des nombres. Tome I: Le calcul des nombres entiers, le calcul des nombres rationnels, la divisibilité arithmétique. Gauthier-Villars, Paris (French).
  • 9: 32.13 Reductions of Partial Differential Equations
    §32.13(i) Korteweg–de Vries and Modified Korteweg–de Vries Equations
    The modified Korteweg–de Vries (mKdV) equation … The Korteweg–de Vries (KdV) equation …
    10: 27.2 Functions
    §27.2(i) Definitions
    (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) This result, first proved in Hadamard (1896) and de la Vallée Poussin (1896a, b), is known as the prime number theorem. …This is the number of positive integers n that are relatively prime to n ; ϕ ( n ) is Euler’s totient. If ( a , n ) = 1 , then the Euler–Fermat theorem states that …