About the Project

Darboux%20method

AdvancedHelp

(0.002 seconds)

1—10 of 225 matching pages

1: 31.8 Solutions via Quadratures
ϵ = m 3 + 1 2 , m 0 , m 1 , m 2 , m 3 = 0 , 1 , 2 , ,
the Hermite–Darboux method (see Whittaker and Watson (1927, pp. 570–572)) can be applied to construct solutions of (31.2.1) expressed in quadratures, as follows. …
2: Bibliography W
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
  • R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
  • R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.
  • 3: 2.10 Sums and Sequences
    The asymptotic behavior of entire functions defined by Maclaurin series can be approached by converting the sum into a contour integral by use of the residue theorem and applying the methods of §§2.4 and 2.5. … By application of Laplace’s method2.3(iii)) and use again of (5.11.7), we obtain …
    §2.10(iv) Taylor and Laurent Coefficients: Darboux’s Method
    However, if r is finite and f ( z ) has algebraic or logarithmic singularities on | z | = r , then Darboux’s method is usually easier to apply. … See also Flajolet and Odlyzko (1990).
    4: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • D. Gómez-Ullate, N. Kamran, and R. Milson (2010) Exceptional orthogonal polynomials and the Darboux transformation. J. Phys. A 43 (43), pp. 43016, 16 pp..
  • B. Guo (1998) Spectral Methods and Their Applications. World Scientific Publishing Co. Inc., River Edge, NJ-Singapore.
  • 5: 3.8 Nonlinear Equations
    Bisection Method
    Secant Method
    Steffensen’s Method
    Eigenvalue Methods
    6: 18.2 General Orthogonal Polynomials
    §18.2(v) Christoffel–Darboux Formula
    18.2.12 K n ( x , y ) = 0 n p ( x ) p ( y ) h = k n h n k n + 1 p n + 1 ( x ) p n ( y ) p n ( x ) p n + 1 ( y ) x y , x y ,
    Confluent Form
    18.2.13 K n ( x , x ) = = 0 n ( p ( x ) ) 2 h = k n h n k n + 1 ( p n + 1 ( x ) p n ( x ) p n ( x ) p n + 1 ( x ) ) .
    See also the extended development of these ideas in §§18.30(vi), 18.30(vii), and in §18.40(ii) where they form the basis for one method of solving the classical moment problem. …
    7: 27.15 Chinese Remainder Theorem
    Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. … Details of a machine program describing the method together with typical numerical results can be found in Newman (1967). …
    8: 34.9 Graphical Method
    §34.9 Graphical Method
    The graphical method establishes a one-to-one correspondence between an analytic expression and a diagram by assigning a graphical symbol to each function and operation of the analytic expression. …For an account of this method see Brink and Satchler (1993, Chapter VII). For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
    9: 20 Theta Functions
    Chapter 20 Theta Functions
    10: Bibliography I
  • L. Infeld and T. E. Hull (1951) The factorization method. Rev. Modern Phys. 23 (1), pp. 21–68.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and E. Koelink (2011) The J -matrix method. Adv. in Appl. Math. 46 (1-4), pp. 379–395.
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.