About the Project

Coulomb%20potentials

AdvancedHelp

(0.001 seconds)

3 matching pages

1: Bibliography B
  • E. Bank and M. E. H. Ismail (1985) The attractive Coulomb potential polynomials. Constr. Approx. 1 (2), pp. 103–119.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • A. Bhattacharjie and E. C. G. Sudarshan (1962) A class of solvable potentials. Nuovo Cimento (10) 25, pp. 864–879.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.
  • 2: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • N. Michel and M. V. Stoitsov (2008) Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Comm. 178 (7), pp. 535–551.
  • N. Michel (2007) Precise Coulomb wave functions for a wide range of complex , η and z . Computer Physics Communications 176 (3), pp. 232–249.
  • C. Micu and E. Papp (2005) Applying q -Laguerre polynomials to the derivation of q -deformed energies of oscillator and Coulomb systems. Romanian Reports in Physics 57 (1), pp. 25–34.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 3: 18.39 Applications in the Physical Sciences
    The Schrödinger equation with potential
    The Quantum Coulomb Problem
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … The positive energy (scattering) eigenfunctions for the above Coulomb problem, with potential V ( r ) = Z e 2 / r are discussed in Chapter 33 for each integer l . …
    The Coulomb–Pollaczek Polynomials