About the Project

Coulomb%20functions

AdvancedHelp

(0.004 seconds)

1—10 of 17 matching pages

1: Bibliography B
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • 2: 33.24 Tables
    §33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • Curtis (1964a) tabulates P ( ϵ , r ) , Q ( ϵ , r ) 33.1), and related functions for = 0 , 1 , 2 and ϵ = 2 ( .2 ) 2 , with x = 0 ( .1 ) 4 for ϵ < 0 and x = 0 ( .1 ) 10 for ϵ 0 ; 6D.

  • 3: 33.3 Graphics
    §33.3 Graphics
    §33.3(i) Line Graphs of the Coulomb Radial Functions F ( η , ρ ) and G ( η , ρ )
    See accompanying text
    Figure 33.3.4: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 10 . The turning point is at ρ tp ( 10 , 0 ) = 20 . Magnify
    §33.3(ii) Surfaces of the Coulomb Radial Functions F 0 ( η , ρ ) and G 0 ( η , ρ )
    See accompanying text
    Figure 33.3.8: G 0 ( η , ρ ) , 2 η 2 , 0 < ρ 5 . Magnify 3D Help
    4: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 5: William P. Reinhardt
    Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    6: Bibliography C
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • A. R. Curtis (1964a) Coulomb Wave Functions. Roy. Soc. Math. Tables, Vol. 11, Cambridge University Press, Cambridge.
  • 7: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 8: Software Index
    Open Source With Book Commercial
    20 Theta Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    9: 18.40 Methods of Computation
    Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … H ( x ) being the Heaviside step-function, see (1.16.13). Equation (18.40.7) provides step-histogram approximations to a x d μ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. … The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). … Further, exponential convergence in N , via the Derivative Rule, rather than the power-law convergence of the histogram methods, is found for the inversion of Gegenbauer, Attractive, as well as Repulsive, Coulomb–Pollaczek, and Hermite weights and zeros to approximate w ( x ) for these OP systems on x [ 1 , 1 ] and ( , ) respectively, Reinhardt (2018), and Reinhardt (2021b), Reinhardt (2021a). …
    10: 18.39 Applications in the Physical Sciences
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    c) Spherical Radial Coulomb Wave Functions
    d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
    Discretized and Continuum Expansions of Scattering Eigenfunctions in terms of Pollaczek Polynomials: J-matrix Theory
    The Coulomb–Pollaczek polynomials provide alternate representations of the positive energy Coulomb wave functions of Chapter 33. …