About the Project

Clenshaw%20algorithm

AdvancedHelp

(0.002 seconds)

7 matching pages

1: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver and D. J. Sookne (1972) Note on backward recurrence algorithms. Math. Comp. 26 (120), pp. 941–947.
  • F. W. J. Olver (1964a) Error analysis of Miller’s recurrence algorithm. Math. Comp. 18 (85), pp. 65–74.
  • F. W. J. Olver (1967b) Bounds for the solutions of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B (4), pp. 161–166.
  • H. Oser (1960) Algorithm 22: Riccati-Bessel functions of first and second kind. Comm. ACM 3 (11), pp. 600–601.
  • 2: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • Y. L. Luke (1977b) Algorithms for the Computation of Mathematical Functions. Academic Press, New York.
  • 3: Bibliography P
  • K. A. Paciorek (1970) Algorithm 385: Exponential integral Ei ( x ) . Comm. ACM 13 (7), pp. 446–447.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • G. P. M. Poppe and C. M. J. Wijers (1990) Algorithm 680: Evaluation of the complex error function. ACM Trans. Math. Software 16 (1), pp. 47.
  • 4: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.
  • 5: Bibliography C
  • C. W. Clenshaw and A. R. Curtis (1960) A method for numerical integration on an automatic copmputer. Numer. Math. 2 (4), pp. 197–205.
  • C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner (1986) Generalized exponential and logarithmic functions. Comput. Math. Appl. Part B 12 (5-6), pp. 1091–1101.
  • C. W. Clenshaw, G. F. Miller, and M. Woodger (1962) Algorithms for special functions. I. Numer. Math. 4, pp. 403–419.
  • C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey. In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • C. W. Clenshaw and F. W. J. Olver (1984) Beyond floating point. J. Assoc. Comput. Mach. 31 (2), pp. 319–328.
  • 6: 18.40 Methods of Computation
    For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. For further information see Clenshaw (1955), Gautschi (2004, §§2.1, 8.1), and Mason and Handscomb (2003, §2.4). … A simple set of choices is spelled out in Gordon (1968) which gives a numerically stable algorithm for direct computation of the recursion coefficients in terms of the moments, followed by construction of the J-matrix and quadrature weights and abscissas, and we will follow this approach: Let N be a positive integer and define … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . Gautschi (2004, p. 119–120) has explored the ε 0 + limit via the Wynn ε -algorithm, (3.9.11) to accelerate convergence, finding four to eight digits of precision in w ( x ) , depending smoothly on x , for N 4000 , for an example involving first numerator Legendre OP’s. …
    7: Bibliography W
  • J. Waldvogel (2006) Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT 46 (1), pp. 195–202.
  • T. Weider (1999) Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Trans. Math. Software 25 (2), pp. 240–250.
  • E. J. Weniger (2003) A rational approximant for the digamma function. Numer. Algorithms 33 (1-4), pp. 499–507.
  • H. S. Wilf and D. Zeilberger (1992a) An algorithmic proof theory for hypergeometric (ordinary and “ q ”) multisum/integral identities. Invent. Math. 108, pp. 575–633.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.