About the Project

Chu–Vandermonde sums (first and second)

AdvancedHelp

(0.003 seconds)

11—20 of 517 matching pages

11: 10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
12: 22.11 Fourier and Hyperbolic Series
22.11.1 sn ( z , k ) = 2 π K k n = 0 q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.2 cn ( z , k ) = 2 π K k n = 0 q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.13 sn 2 ( z , k ) = 1 k 2 ( 1 E K ) 2 π 2 k 2 K 2 n = 1 n q n 1 q 2 n cos ( 2 n ζ ) .
13: 14.28 Sums
§14.28 Sums
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
§14.28(iii) Other Sums
14: 14.7 Integer Degree and Order
14.7.4 W n 1 ( x ) = k = 1 n 1 k P k 1 ( x ) P n k ( x ) .
14.7.18 𝖰 n ± m ( x ) = ( 1 ) n m 1 𝖰 n ± m ( x ) .
14.7.20 n = 0 𝖰 n ( x ) h n = 1 ( 1 2 x h + h 2 ) 1 / 2 ln ( x h + ( 1 2 x h + h 2 ) 1 / 2 ( 1 x 2 ) 1 / 2 ) .
15: Bibliography D
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • 16: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
    The double sums in (22.12.2)–(22.12.4) are convergent but not absolutely convergent, hence the order of the summations is important. …
    22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
    22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
    22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,
    17: 10.38 Derivatives with Respect to Order
    10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
    10.38.3 ( 1 ) n I ν ( z ) ν | ν = n = K n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) ,
    10.38.4 K ν ( z ) ν | ν = n = n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k K k ( z ) k ! ( n k ) .
    I ν ( z ) ν | ν = 0 = K 0 ( z ) ,
    18: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    Also, with I n and K n denoting the modified Bessel functions (§10.25(ii)), and again with s = 0 , 1 , 2 , , …
    28.24.10 ε s Ke 2 m ( z , h ) = = 0 A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( I s ( h e z ) K + s ( h e z ) + I + s ( h e z ) K s ( h e z ) ) ,
    28.24.11 Ko 2 m + 2 ( z , h ) = = 0 B 2 + 2 2 m + 2 ( h 2 ) B 2 s + 2 2 m + 2 ( h 2 ) ( I s ( h e z ) K + s + 2 ( h e z ) I + s + 2 ( h e z ) K s ( h e z ) ) ,
    28.24.12 Ke 2 m + 1 ( z , h ) = = 0 B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) I + s + 1 ( h e z ) K s ( h e z ) ) ,
    28.24.13 Ko 2 m + 1 ( z , h ) = = 0 A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( I s ( h e z ) K + s + 1 ( h e z ) + I + s + 1 ( h e z ) K s ( h e z ) ) .
    19: 19.5 Maclaurin and Related Expansions
    19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
    Coefficients of terms up to λ 49 are given in Lee (1990), along with tables of fractional errors in K ( k ) and E ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9).
    19.5.8 K ( k ) = π 2 ( 1 + 2 n = 1 q n 2 ) 2 , | q | < 1 ,
    19.5.9 E ( k ) = K ( k ) + 2 π 2 K ( k ) n = 1 ( 1 ) n n 2 q n 2 1 + 2 n = 1 ( 1 ) n q n 2 , | q | < 1 .
    Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). …
    20: 24.15 Related Sequences of Numbers
    24.15.1 2 t e t + 1 = n = 1 G n t n n ! ,
    24.15.3 tan t = n = 0 T n t n n ! ,
    §24.15(iii) Stirling Numbers
    The Stirling numbers of the first kind s ( n , m ) , and the second kind S ( n , m ) , are as defined in §26.8(i).
    24.15.6 B n = k = 0 n ( 1 ) k k ! S ( n , k ) k + 1 ,