About the Project

Ces%C3%A0ro

AdvancedHelp

Did you mean Ces%C3%from ?

(0.002 seconds)

1—10 of 28 matching pages

1: 18.42 Software
For another listing of Web-accessible software for the functions in this chapter, see GAMS (class C3). …
2: 28.11 Expansions in Series of Mathieu Functions
28.11.1 f ( z ) = α 0 ce 0 ( z , q ) + n = 1 ( α n ce n ( z , q ) + β n se n ( z , q ) ) ,
α n = 1 π 0 2 π f ( x ) ce n ( x , q ) d x ,
28.11.3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) ,
28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
28.11.5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) ,
3: 28.3 Graphics
See accompanying text
Figure 28.3.1: ce 2 n ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.2: ce 2 n ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.3: ce 2 n + 1 ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.4: ce 2 n + 1 ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
See accompanying text
Figure 28.3.9: ce 0 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help
4: 28.9 Zeros
For real q each of the functions ce 2 n ( z , q ) , se 2 n + 1 ( z , q ) , ce 2 n + 1 ( z , q ) , and se 2 n + 2 ( z , q ) has exactly n zeros in 0 < z < 1 2 π . …For q the zeros of ce 2 n ( z , q ) and se 2 n + 1 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n ( q 1 / 4 ( π 2 z ) ) , and the zeros of ce 2 n + 1 ( z , q ) and se 2 n + 2 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n + 1 ( q 1 / 4 ( π 2 z ) ) . …Furthermore, for q > 0 ce m ( z , q ) and se m ( z , q ) also have purely imaginary zeros that correspond uniquely to the purely imaginary z -zeros of J m ( 2 q cos z ) 10.21(i)), and they are asymptotically equal as q 0 and | z | . …
5: 28.1 Special Notation
ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
Ce ν ( z , q ) , Se ν ( z , q ) , Fe n ( z , q ) , Ge n ( z , q ) ,
in n = fe n , ceh n = Ce n , inh n = Fe n ,
Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
6: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
7: 28.5 Second Solutions fe n , ge n
28.5.8 𝒲 { ce n , fe n } = ce n ( 0 , q ) fe n ( 0 , q ) ,
For further information on C n ( q ) , S n ( q ) , and expansions of f n ( z , q ) , g n ( z , q ) in Fourier series or in series of ce n , se n functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72). …
See accompanying text
Figure 28.5.1: fe 0 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 0 ( x , 0.5 ) . Magnify
See accompanying text
Figure 28.5.2: fe 0 ( x , 1 ) for 0 x 2 π and (for comparison) ce 0 ( x , 1 ) . Magnify
See accompanying text
Figure 28.5.3: fe 1 ( x , 0.5 ) for 0 x 2 π and (for comparison) ce 1 ( x , 0.5 ) . Magnify
8: 28.13 Graphics
§28.13(ii) Solutions ce ν ( x , q ) , se ν ( x , q ) , and me ν ( x , q ) for General ν
See accompanying text
Figure 28.13.3: ce ν ( x , 1 ) for 1 < ν < 1 , 0 x 2 π . Magnify 3D Help
9: 28.22 Connection Formulas
28.22.5 g e , 2 m ( h ) = ( 1 ) m 2 π ce 2 m ( 1 2 π , h 2 ) A 0 2 m ( h 2 ) ,
28.22.6 g e , 2 m + 1 ( h ) = ( 1 ) m + 1 2 π ce 2 m + 1 ( 1 2 π , h 2 ) h A 1 2 m + 1 ( h 2 ) ,
fe m ( 0 , h 2 ) = 1 2 π C m ( h 2 ) ( g e , m ( h ) ) 2 ce m ( 0 , h 2 ) ,
10: 28.12 Definitions and Basic Properties
me n ( z , q ) = 2 ce n ( z , q ) , n = 0 , 1 , 2 , ,
§28.12(iii) Functions ce ν ( z , q ) , se ν ( z , q ) , when ν
28.12.12 ce ν ( z , q ) = 1 2 ( me ν ( z , q ) + me ν ( z , q ) ) ,
28.12.14 ce ν ( z , q ) = ce ν ( z , q ) = ce ν ( z , q ) ,
Again, the limiting values of ce ν ( z , q ) and se ν ( z , q ) as ν n ( 0 ) are not the functions ce n ( z , q ) and se n ( z , q ) defined in §28.2(vi). …