About the Project

Cauchy–Schwarz

AdvancedHelp

(0.001 seconds)

1—10 of 38 matching pages

1: 1.7 Inequalities
CauchySchwarz Inequality
CauchySchwarz Inequality
2: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • M. B. Green, J. H. Schwarz, and E. Witten (1988a) Superstring Theory: Introduction, Vol. 1. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • M. B. Green, J. H. Schwarz, and E. Witten (1988b) Superstring Theory: Loop Amplitudes, Anomalies and Phenomenolgy, Vol. 2. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • 3: 1.10 Functions of a Complex Variable
    Schwarz Reflection Principle
    Schwarz’s Lemma
    4: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
    Cauchy’s Sum
    5: 4.10 Integrals
    4.10.7 0 x d t ln t = li ( x ) , x > 1 .
    The left-hand side of (4.10.7) is a Cauchy principal value (§1.4(v)). …
    6: 1.3 Determinants, Linear Operators, and Spectral Expansions
    Cauchy Determinant
    7: 19.3 Graphics
    See accompanying text
    Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . … Magnify
    See accompanying text
    Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . Cauchy principal values are shown when α 2 > 1 . … Magnify 3D Help
    See accompanying text
    Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . …If sin 2 ϕ = 1 ( > k 2 ), then the function reduces to Π ( 2 , k ) with Cauchy principal value K ( k ) Π ( 1 2 k 2 , k ) , which tends to as k 2 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
    8: 1.9 Calculus of a Complex Variable
    Cauchy–Riemann Equations
    Cauchy’s Theorem
    Cauchy’s Integral Formula
    9: 10.11 Analytic Continuation
    10: 1.4 Calculus of One Variable
    Cauchy Principal Values
    1.4.24 a b f ( x ) d x = 𝑃 a b f ( x ) d x = lim ϵ 0 + ( a c ϵ f ( x ) d x + c + ϵ b f ( x ) d x ) ,
    1.4.25 f ( x ) d x = 𝑃 f ( x ) d x = lim b b b f ( x ) d x ,