About the Project

Cauchy%20sum

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 18.40 Methods of Computation
18.40.5 F N ( z ) = 1 μ 0 n = 1 N w n z x n .
18.40.6 lim ε 0 + a b w ( x ) d x x + i ε x d x = a b w ( x ) d x x x i π w ( x ) ,
Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
18.40.7 μ N ( x ) = n = 1 N w n H ( x x n ) , x ( a , b ) ,
2: 3.4 Differentiation
B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
If f can be extended analytically into the complex plane, then from Cauchy’s integral formula (§1.9(iii)) …
3: 19.36 Methods of Computation
When the differences are moderately small, the iteration is stopped, the elementary symmetric functions of certain differences are calculated, and a polynomial consisting of a fixed number of terms of the sum in (19.19.7) is evaluated. …
19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
All cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). …
19.36.13 2 R G ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = ( t 0 2 + θ m = 0 2 m 1 c m 2 ) R C ( T 2 + θ M 2 , T 2 ) + h 0 + m = 1 2 m ( h m h m 1 ) .
For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
4: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.