About the Project

Cauchy

AdvancedHelp

(0.000 seconds)

1—10 of 36 matching pages

1: 1.7 Inequalities
Cauchy–Schwarz Inequality
Cauchy–Schwarz Inequality
2: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
Cauchy’s Sum
3: 4.10 Integrals
4.10.7 0 x d t ln t = li ( x ) , x > 1 .
The left-hand side of (4.10.7) is a Cauchy principal value (§1.4(v)). …
4: 1.3 Determinants, Linear Operators, and Spectral Expansions
Cauchy Determinant
5: 19.3 Graphics
See accompanying text
Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . … Magnify
See accompanying text
Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . Cauchy principal values are shown when α 2 > 1 . … Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . …If sin 2 ϕ = 1 ( > k 2 ), then the function reduces to Π ( 2 , k ) with Cauchy principal value K ( k ) Π ( 1 2 k 2 , k ) , which tends to as k 2 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
6: 1.9 Calculus of a Complex Variable
Cauchy–Riemann Equations
Cauchy’s Theorem
Cauchy’s Integral Formula
7: 1.4 Calculus of One Variable
Cauchy Principal Values
1.4.24 a b f ( x ) d x = 𝑃 a b f ( x ) d x = lim ϵ 0 + ( a c ϵ f ( x ) d x + c + ϵ b f ( x ) d x ) ,
1.4.25 f ( x ) d x = 𝑃 f ( x ) d x = lim b b b f ( x ) d x ,
8: 19.17 Graphics
See accompanying text
Figure 19.17.6: Cauchy principal value of R J ( x , y , 1 , 0.5 ) for 0 x 1 , y = 0 ,  0.1 ,  0.5 ,  1 . … Magnify
See accompanying text
Figure 19.17.7: Cauchy principal value of R J ( 0.5 , y , 1 , p ) for y = 0 ,  0.01 ,  0.05 ,  0.2 ,  1 , 1 p < 0 . … Magnify
See accompanying text
Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . Cauchy principal values are shown when p < 0 . … Magnify 3D Help
9: 19.2 Definitions
The integral for E ( ϕ , k ) is well defined if k 2 = sin 2 ϕ = 1 , and the Cauchy principal value (§1.4(v)) of Π ( ϕ , α 2 , k ) is taken if 1 α 2 sin 2 ϕ vanishes at an interior point of the integration path. … If < p < 0 , then the integral in (19.2.11) is a Cauchy principal value. … where the Cauchy principal value is taken if y < 0 . Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … The Cauchy principal value is hyperbolic: …
10: 19.6 Special Cases
If 1 < α 2 < , then the Cauchy principal value satisfies … Circular and hyperbolic cases, including Cauchy principal values, are unified by using R C ( x , y ) . … For the Cauchy principal value of Π ( ϕ , α 2 , k ) when α 2 > c , see §19.7(iii). …