About the Project

Catalan constant

AdvancedHelp

(0.002 seconds)

11—20 of 438 matching pages

11: 16.16 Transformations of Variables
16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
16.16.5_5 F 4 ( α , β ; γ , β ; x ( 1 y ) , y ( 1 x ) ) = ( 1 x ) α ( 1 y ) α F 1 ( α ; γ β , α γ + 1 ; γ ; x x 1 , x y ( 1 x ) ( 1 y ) ) ,
16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
16.16.9 F 2 ( α ; β , β ; γ , γ ; x , y ) = ( 1 x ) α F 2 ( α ; γ β , β ; γ , γ ; x x 1 , y 1 x ) ,
16.16.10 F 4 ( α , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( β α ) Γ ( γ α ) Γ ( β ) ( y ) α F 4 ( α , α γ + 1 ; γ , α β + 1 ; x y , 1 y ) + Γ ( γ ) Γ ( α β ) Γ ( γ β ) Γ ( α ) ( y ) β F 4 ( β , β γ + 1 ; γ , β α + 1 ; x y , 1 y ) .
12: 5.13 Integrals
5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
5.13.3 1 2 π Γ ( a + i t ) Γ ( b + i t ) Γ ( c i t ) Γ ( d i t ) d t = Γ ( a + c ) Γ ( a + d ) Γ ( b + c ) Γ ( b + d ) Γ ( a + b + c + d ) , a , b , c , d > 0 .
5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
13: 5.22 Tables
Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln Γ ( x + i y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. …Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
14: 30.6 Functions of Complex Argument
The solutions
𝑃𝑠 n m ( z , γ 2 ) ,
𝑄𝑠 n m ( z , γ 2 ) ,
of (30.2.1) with μ = m and λ = λ n m ( γ 2 ) are real when z ( 1 , ) , and their principal values (§4.2(i)) are obtained by analytic continuation to ( , 1 ] . … with A n ± m ( γ 2 ) as in (30.11.4). …
15: 32.2 Differential Equations
with α , β , γ , and δ arbitrary constants. … In general the singularities of the solutions are movable in the sense that their location depends on the constants of integration associated with the initial or boundary conditions. … For arbitrary values of the parameters α , β , γ , and δ , the general solutions of P I P VI  are transcendental, that is, they cannot be expressed in closed-form elementary functions. … If γ δ 0 in P III , then set γ = 1 and δ = 1 , without loss of generality, by rescaling w and z if necessary. …Lastly, if δ = 0 and β γ 0 , then set β = 1 and γ = 1 , without loss of generality. …
16: 8.8 Recurrence Relations and Derivatives
8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
If w ( a , z ) = γ ( a , z ) or Γ ( a , z ) , then …
8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
8.8.8 γ ( a , z ) = Γ ( a ) Γ ( a n ) γ ( a n , z ) z a 1 e z k = 0 n 1 Γ ( a ) Γ ( a k ) z k ,
8.8.10 Γ ( a , z ) = Γ ( a ) Γ ( a n ) Γ ( a n , z ) + z a 1 e z k = 0 n 1 Γ ( a ) Γ ( a k ) z k ,
17: 5.8 Infinite Products
5.8.1 Γ ( z ) = lim k k ! k z z ( z + 1 ) ( z + k ) , z 0 , 1 , 2 , ,
5.8.2 1 Γ ( z ) = z e γ z k = 1 ( 1 + z k ) e z / k ,
5.8.3 | Γ ( x ) Γ ( x + i y ) | 2 = k = 0 ( 1 + y 2 ( x + k ) 2 ) , x 0 , 1 , .
5.8.5 k = 0 ( a 1 + k ) ( a 2 + k ) ( a m + k ) ( b 1 + k ) ( b 2 + k ) ( b m + k ) = Γ ( b 1 ) Γ ( b 2 ) Γ ( b m ) Γ ( a 1 ) Γ ( a 2 ) Γ ( a m ) ,
18: 15.11 Riemann’s Differential Equation
The most general form is given by … Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. …Also, if any of α , β , γ , is at infinity, then we take the corresponding limit in (15.11.1). … where κ , λ , μ , ν are real or complex constants such that κ ν λ μ = 1 . These constants can be chosen to map any two sets of three distinct points { α , β , γ } and { α ~ , β ~ , γ ~ } onto each other. …
19: 30.4 Functions of the First Kind
The eigenfunctions of (30.2.1) that correspond to the eigenvalues λ n m ( γ 2 ) are denoted by 𝖯𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , . …the sign of 𝖯𝗌 n m ( 0 , γ 2 ) being ( 1 ) ( n + m ) / 2 when n m is even, and the sign of d 𝖯𝗌 n m ( x , γ 2 ) / d x | x = 0 being ( 1 ) ( n + m 1 ) / 2 when n m is odd. When γ 2 > 0 𝖯𝗌 n m ( x , γ 2 ) is the prolate angular spheroidal wave function, and when γ 2 < 0 𝖯𝗌 n m ( x , γ 2 ) is the oblate angular spheroidal wave function. If γ = 0 , 𝖯𝗌 n m ( x , 0 ) reduces to the Ferrers function 𝖯 n m ( x ) : … 𝖯𝗌 n m ( x , γ 2 ) has exactly n m zeros in the interval 1 < x < 1 . …
20: 8.2 Definitions and Basic Properties
The general values of the incomplete gamma functions γ ( a , z ) and Γ ( a , z ) are defined by … In this subsection the functions γ and Γ have their general values. The function γ ( a , z ) is entire in z and a . … If w = γ ( a , z ) or Γ ( a , z ) , then … If w = e z z 1 a Γ ( a , z ) , then …