About the Project

Cash App Wallet Phone%E2%98%8E%EF%B8%8F%2B1%28888%E2%80%92481%E2%80%924477%29%E2%98%8E%EF%B8%8F %22Number%22

AdvancedHelp

Did you mean Cash App valle honneur%E2%98%8E%EF%B8%8F%2B1%2888%E2%80%2481%E2%80%92478%29%E2%98%8E%EF%B8%8F %22Number%22 ?

(0.008 seconds)

1—10 of 859 matching pages

1: 3.6 Linear Difference Equations
The Weber function 𝐄 n ( 1 ) satisfies …We apply the algorithm to compute 𝐄 n ( 1 ) to 8S for the range n = 1 , 2 , , 10 , beginning with the value 𝐄 0 ( 1 ) = 0.56865  663 obtained from the Maclaurin series expansion (§11.10(iii)). In the notation of §3.6(v) we have M = 10 and ϵ = 1 2 × 10 8 . …The values of w n for n = 1 , 2 , , 10 are the wanted values of 𝐄 n ( 1 ) . … For further information see Wimp (1984, Chapters 7–8), Cash and Zahar (1994), and Lozier (1980).
2: Bibliography C
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • J. R. Cash and R. V. M. Zahar (1994) A Unified Approach to Recurrence Algorithms. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Computational Mathematics, Vol. 119, pp. 97–120.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • W. J. Cody and K. E. Hillstrom (1967) Chebyshev approximations for the natural logarithm of the gamma function. Math. Comp. 21 (98), pp. 198–203.
  • 3: DLMF Project News
    error generating summary
    4: 33.20 Expansions for Small | ϵ |
    f ( 0 , ; r ) = ( 2 r ) 1 / 2 J 2 + 1 ( 8 r ) ,
    h ( 0 , ; r ) = ( 2 r ) 1 / 2 Y 2 + 1 ( 8 r ) , r > 0 ,
    f ( 0 , ; r ) = ( 1 ) + 1 ( 2 | r | ) 1 / 2 I 2 + 1 ( 8 | r | ) ,
    where … These expansions are in terms of elementary functions, Airy functions, and Bessel functions of orders 2 + 1 and 2 + 2 .
    5: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    6: 6.14 Integrals
    6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
    6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    7: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • 8: 27.2 Functions
    §27.2(i) Definitions
    where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . ( ν ( 1 ) is defined to be 0.) … The ϕ ( n ) numbers a , a 2 , , a ϕ ( n ) are relatively prime to n and distinct (mod n ). …It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
    9: 8.19 Generalized Exponential Integral
    Most properties of E p ( z ) follow straightforwardly from those of Γ ( a , z ) . For an extensive treatment of E 1 ( z ) see Chapter 6. … Integral representations of Mellin–Barnes type for E p ( z ) follow immediately from (8.6.11), (8.6.12), and (8.19.1). … The general function E p ( z ) is attained by extending the path in (8.19.2) across the negative real axis. Unless p is a nonpositive integer, E p ( z ) has a branch point at z = 0 . …
    10: 24.2 Definitions and Generating Functions
    §24.2 Definitions and Generating Functions
    §24.2(i) Bernoulli Numbers and Polynomials
    §24.2(ii) Euler Numbers and Polynomials
    E 2 n + 1 = 0 ,
    Table 24.2.4: Euler numbers E n .
    n E n