About the Project

Cash App Phone Number☎️+1(888‒481‒4477)☎️ "Number"

AdvancedHelp

(0.015 seconds)

11—20 of 224 matching pages

11: 24.11 Asymptotic Approximations
§24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.3 ( 1 ) n E 2 n 2 2 n + 2 ( 2 n ) ! π 2 n + 1 ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
12: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
13: 3.11 Approximation Techniques
3.11.28 S = j = 1 J ( f ( x j ) p n ( x j ) ) 2 .
Here x j , j = 1 , 2 , , J , is a given set of distinct real points and J n + 1 . …
3.11.32 j = 1 J w ( x j ) ( f ( x j ) Φ n ( x j ) ) 2 ,
In consequence of this structure the number of operations can be reduced to n m = n log 2 n operations. … For many applications a spline function is a more adaptable approximating tool than the Lagrange interpolation polynomial involving a comparable number of parameters; see §3.3(i), where a single polynomial is used for interpolating f ( x ) on the complete interval [ a , b ] . …
14: 24.9 Inequalities
§24.9 Inequalities
24.9.3 4 n | E 2 n | > ( 1 ) n E 2 n ( x ) > 0 ,
24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n
24.9.10 4 n + 1 ( 2 n ) ! π 2 n + 1 > ( 1 ) n E 2 n > 4 n + 1 ( 2 n ) ! π 2 n + 1 1 1 + 3 1 2 n .
15: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers
For asymptotic approximations for s ( n + 1 , k + 1 ) and S ( n , k ) that apply uniformly for 1 k n as n see Temme (1993) and Temme (2015, Chapter 34). …
16: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …It is also equal to the number of permutations in 𝔖 n with exactly k + 1 weak excedances. …
§26.14(iii) Identities
17: 24.4 Basic Properties
24.4.7 k = 1 m k n = B n + 1 ( m + 1 ) B n + 1 n + 1 ,
§24.4(iv) Finite Expansions
24.4.26 E n ( 0 ) = E n ( 1 ) = 2 n + 1 ( 2 n + 1 1 ) B n + 1 , n > 0 .
§24.4(ix) Relations to Other Functions
For the relation of Bernoulli numbers to the Riemann zeta function see §25.6, and to the Eulerian numbers see (26.14.11).
18: DLMF Project News
error generating summary
19: 24.5 Recurrence Relations
§24.5 Recurrence Relations
§24.5(ii) Other Identities
24.5.6 k = 2 n ( n k 2 ) B k k = 1 ( n + 1 ) ( n + 2 ) B n + 1 , n = 2 , 3 , ,
24.5.7 k = 0 n ( n k ) B k n + 2 k = B n + 1 n + 1 , n = 1 , 2 , ,
§24.5(iii) Inversion Formulas
20: 24.13 Integrals
24.13.4 0 1 / 2 B n ( t ) d t = 1 2 n + 1 2 n B n + 1 n + 1 ,
24.13.5 1 / 4 3 / 4 B n ( t ) d t = E n 2 2 n + 1 .
24.13.6 0 1 B n ( t ) B m ( t ) d t = ( 1 ) n 1 m ! n ! ( m + n ) ! B m + n .
24.13.8 0 1 E n ( t ) d t = 2 E n + 1 ( 0 ) n + 1 = 4 ( 2 n + 2 1 ) ( n + 1 ) ( n + 2 ) B n + 2 ,
24.13.9 0 1 / 2 E 2 n ( t ) d t = E 2 n + 1 ( 0 ) 2 n + 1 = 2 ( 2 2 n + 2 1 ) B 2 n + 2 ( 2 n + 1 ) ( 2 n + 2 ) ,