About the Project

Boole%20summation%20formula

AdvancedHelp

(0.003 seconds)

1—10 of 326 matching pages

1: 24.17 Mathematical Applications
§24.17(i) Summation
Euler–Maclaurin Summation Formula
Boole Summation Formula
2: 20 Theta Functions
Chapter 20 Theta Functions
3: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
4: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
5: 8 Incomplete Gamma and Related
Functions
6: 28 Mathieu Functions and Hill’s Equation
7: Bibliography H
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • 8: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 9: 23 Weierstrass Elliptic and Modular
    Functions
    10: 36 Integrals with Coalescing Saddles