About the Project

Bessel transform

AdvancedHelp

(0.008 seconds)

11—20 of 54 matching pages

11: 10.22 Integrals
10.22.57 0 J μ ( a t ) J ν ( a t ) t λ d t = ( 1 2 a ) λ 1 Γ ( 1 2 μ + 1 2 ν 1 2 λ + 1 2 ) Γ ( λ ) 2 Γ ( 1 2 λ + 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 λ + 1 2 μ 1 2 ν + 1 2 ) Γ ( 1 2 λ + 1 2 μ + 1 2 ν + 1 2 ) , ( μ + ν + 1 ) > λ > 0 .
10.22.58 0 J ν ( a t ) J ν ( b t ) t λ d t = ( a b ) ν Γ ( ν 1 2 λ + 1 2 ) 2 λ ( a 2 + b 2 ) ν 1 2 λ + 1 2 Γ ( 1 2 λ + 1 2 ) 𝐅 ( 2 ν + 1 λ 4 , 2 ν + 3 λ 4 ; ν + 1 ; 4 a 2 b 2 ( a 2 + b 2 ) 2 ) , a b , ( 2 ν + 1 ) > λ > 1 .
§10.22(v) Hankel Transform
The Hankel transform (or Bessel transform) of a function f ( x ) is defined as …
10.22.78 f ( x ) = 0 ( x t ) 1 2 J ν ( x t ) Y ν ( a t ) Y ν ( x t ) J ν ( a t ) J ν 2 ( a t ) + Y ν 2 ( a t ) a ( y t ) 1 2 ( J ν ( y t ) Y ν ( a t ) Y ν ( y t ) J ν ( a t ) ) f ( y ) d y d t , a > 0 .
12: 13.23 Integrals
13.23.6 1 Γ ( 1 + 2 μ ) 2 π i ( 0 + ) e z t + 1 2 t 1 t κ M κ , μ ( t 1 ) d t = z κ 1 2 Γ ( 1 2 + μ κ ) I 2 μ ( 2 z ) , z > 0 .
13.23.7 1 2 π i ( 0 + ) e z t + 1 2 t 1 t κ W κ , μ ( t 1 ) d t = 2 z κ 1 2 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) K 2 μ ( 2 z ) , z > 0 .
For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). …
13: Bibliography C
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • 14: 10.43 Integrals
    10.43.26 0 K μ ( a t ) J ν ( b t ) t λ d t = b ν Γ ( 1 2 ν 1 2 λ + 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 λ 1 2 μ + 1 2 ) 2 λ + 1 a ν λ + 1 𝐅 ( ν λ + μ + 1 2 , ν λ μ + 1 2 ; ν + 1 ; b 2 a 2 ) , ( ν + 1 λ ) > | μ | , a > | b | .
    10.43.27 0 t μ + ν + 1 K μ ( a t ) J ν ( b t ) d t = ( 2 a ) μ ( 2 b ) ν Γ ( μ + ν + 1 ) ( a 2 + b 2 ) μ + ν + 1 , ( ν + 1 ) > | μ | , a > | b | .
    §10.43(v) Kontorovich–Lebedev Transform
    10.43.30 f ( y ) = 2 y π 2 sinh ( π y ) 0 g ( x ) x K i y ( x ) d x .
    15: 1.14 Integral Transforms
    §1.14 Integral Transforms
    16: 18.17 Integrals
    18.17.18 0 1 ( 1 x 2 ) λ 1 2 C 2 n + 1 ( λ ) ( x ) sin ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ + 1 ) J 2 n + λ + 1 ( y ) ( 2 n + 1 ) ! Γ ( λ ) ( 2 y ) λ .
    17: Bibliography P
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • 18: 3.5 Quadrature
    Example. Laplace Transform Inversion
    19: 10.42 Zeros
    Properties of the zeros of I ν ( z ) and K ν ( z ) may be deduced from those of J ν ( z ) and H ν ( 1 ) ( z ) , respectively, by application of the transformations (10.27.6) and (10.27.8). …
    20: 10.9 Integral Representations
    10.9.22 J ν ( x ) = 1 2 π i i i Γ ( t ) ( 1 2 x ) ν + 2 t Γ ( ν + t + 1 ) d t , ν > 0 , x > 0 ,
    10.9.23 J ν ( z ) = 1 2 π i i c + i c Γ ( t ) Γ ( ν t + 1 ) ( 1 2 z ) ν 2 t d t ,
    10.9.24 H ν ( 1 ) ( z ) = e 1 2 ν π i 2 π 2 c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 i z ) ν 2 t d t , 0 < ph z < π ,
    10.9.25 H ν ( 2 ) ( z ) = e 1 2 ν π i 2 π 2 c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 i z ) ν 2 t d t , π < ph z < 0 .
    10.9.29 J μ ( x ) J ν ( x ) = 1 2 π i i i Γ ( t ) Γ ( 2 t + μ + ν + 1 ) ( 1 2 x ) μ + ν + 2 t Γ ( t + μ + 1 ) Γ ( t + ν + 1 ) Γ ( t + μ + ν + 1 ) d t , x > 0 ,