About the Project

Bateman-type%20sums

AdvancedHelp

(0.003 seconds)

11—20 of 422 matching pages

11: 8 Incomplete Gamma and Related
Functions
12: 28 Mathieu Functions and Hill’s Equation
13: 26.2 Basic Definitions
A partition of a nonnegative integer n is an unordered collection of positive integers whose sum is n . … The integers whose sum is n are referred to as the parts in the partition. …
Table 26.2.1: Partitions p ( n ) .
n p ( n ) n p ( n ) n p ( n )
3 3 20 627 37 21637
14: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 15: 23 Weierstrass Elliptic and Modular
    Functions
    16: 4.41 Sums
    §4.41 Sums
    For sums of hyperbolic functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §43), Prudnikov et al. (1986a, §5.3), and Zucker (1979).
    17: 7.15 Sums
    §7.15 Sums
    For sums involving the error function see Hansen (1975, p. 423) and Prudnikov et al. (1986b, vol. 2, pp. 650–651).
    18: 20.11 Generalizations and Analogs
    §20.11(i) Gauss Sum
    For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    20.11.3 f ( a , b ) = n = a n ( n + 1 ) / 2 b n ( n 1 ) / 2 ,
    19: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    Table 26.4.1: Multinomials and partitions.
    n m λ M 1 M 2 M 3
    5 2 2 1 , 3 1 10 20 10
    5 3 1 2 , 3 1 20 20 10
    26.4.9 ( x 1 + x 2 + + x k ) n = ( n n 1 , n 2 , , n k ) x 1 n 1 x 2 n 2 x k n k ,
    26.4.10 ( n 1 + n 2 + + n m n 1 , n 2 , , n m ) = k = 1 m ( n 1 + n 2 + + n m 1 n 1 , n 2 , , n k 1 , n k 1 , n k + 1 , , n m ) , n 1 , n 2 , , n m 1 .
    20: 26.5 Lattice Paths: Catalan Numbers
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    6 132 13 7 42900 20 65641 20420
    26.5.2 n = 0 C ( n ) x n = 1 1 4 x 2 x , | x | < 1 4 .
    26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
    26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .